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Recognition in Time Series Data

Sequence Models

Given T time ordered examples from some stationary distribution
{(xt , yt)}T1 , predict the most likely label sequence y on test data.
Because data is sparse, we must rely heavily on context

Generative Models

I e.g. HMMs model the joint p(x , y) as∏T
t=1 p(yt |yt−1)p(xt |yt)

I Make two (crippling) independence assertions: ∀yk 6∈ nb(yt),
yt ⊥⊥ yk |ynb and xt ⊥⊥ xk , yk |yt .

I p(y , x) = p(y)p(x |y) shows how to ”generate” features x
from a label y

I Bayes’ theorem: given the true p∗(x |y), compute exactly
p(y |x). But HMMs only model p(xt |yt), a far cry from
p(x |y). We want richer features...

1nb(yt) is the neighbors of yt



Recognition in Time Series Data

Log-linear Models

Logistic Regression models p(yi |xi ) by assuming log(p(y |x)) is
linear in the features x : p(yi |xi ) = 1

Z(x)exp{b + θ · x}. Can also

use a nonlinear feature function f (y , x) ∈ Rk

Discriminative Models

I Don’t bother wasting parameters to model p(x), we only care
about p(y |x). But, the hypothesis space is the same

I More relaxed independence assertions: ∀yk 6∈ nb(yt):
yt ⊥⊥ yk |ynb, x

I Express p(y |x) as a log linear model, but now, feature
functions can be derived from the whole input x

I If p(y |x) factorizes according to some graphical model G ,
with small max cliques, we can do inference and parameter
estimation efficiently



General CRFs

If F = {Ψa} is the set of factors in G , then the conditional
distribution for a CRF is p(y |x) = 1

Z(x)

∏
a Ψa(ya, xa) where ya and

xa are the sets of variables in y and x that belong to clique Ψa. If
we express Ψa in log-linear form...



Linear Chain CRF

Parameter Tying over Time

In general CRFs, each Ψa can have its own parameters θa and
feature function fa(ya, xa). If our cliques tessellate through time,
we can share parameters.

And throwing in the Markov property for linear chains:

p(y |x) =
1

Z (x)

∏
a

Ψa(ya, xa)→ 1

Z (x)

T∏
t

Ψt(yt , yt−1, xt) (1)

Force clique potential to be in the exponential family:

Ψa = exp{θa · fa(ya, xa)}

Notice Z only depends on x and is more easily computed.
However, Z is summed over all possible label sequences (use
forward backward)



Linear Chain CRF

p(y |x) can now be written as:



Linear Chain CRF Tricks

Convenience of parameter tying

If each yt can take on k values, then at each t we can define a
matrix Mt = Rk×k such that Mt(yi , yj |x) = exp{θij · f (yi , yj , x)}

I Then Z (x) =
∏T

t=1Mi

I and the probability of the label sequence becomes

p(y |x) =
∏T

t=1 Mi (yt−1,yt |x)
Z(x)

Sparsity in label space

Not every sequence of consecutive labels yi , yk may be valid, so the
O(k2)-time updates for each forward and backward step can be
reduced drastically.



Our Project

Multiple views of x

We now TWO sequences of observations u = {ut}Tt=1 and
v = {vt}Tt=1 ui ∈ Rd1 , vi ∈ Rd2 corresponding to articulatory and
acoustic measurements of natural speech.



Conditional Model for Multiview CRFs

HMM-like model

I Labels yt take on k values, use one-hot vectors to simulate
indicator function

I Three parameters: θ ∈ Rk×k (transition), φ1 ∈ Rk×d1

(emission view 1), φ1 ∈ Rk×d2 (emission view 2)

I emission features can easily be broadened

I clique potential: Ψt = exp{yTt θyt−1 + yTt φ1ut + yTt φ2vt}
I Z (u, v) =

∑
y

∏T
t=1 Ψt

p(y |u, v) =
1

Z (u, v)

T∏
t=1

exp{yTt θyt−1 + yTt φ1ut + yTt φ2vt} (2)



Inference in Multiview CRFs

Three main inference tasks, almost identical to those of HMMs:

I edge marginals: p(yt , yt−1|x ; θ)1 For marginals, use
forward-backward message passing:
p(yt , yt−1|x ; θ) = 1

Z(x)αt−1(yt − 1)Ψt(yt , yt−1, xt)βt(t)

I node marginals: p(yt |x ; θ) = 1
Z(x)αt(yt)βt(yt)

I sequence labels: y∗ = argmaxy p(y |u, v ; θ). Use the Viterbi
algorithm

I finding the N-best sequence labels may also be useful

1use θ as shorthand for {θ;φ1;φ2}, and x as shorthand for {u, v}



Parameter Estimation in Multiview CRFs

Training setup

We have N labeled time sequences2 for training,
D = {x (i), y (i)}Ni=1 each not necessarily of length T .3

Regularized MLE

I Recall for a single training sequence,
p(y |u, v) = 1

Z(u,v)

∏T
t=1 exp{yTt θyt−1 + yTt φ1ut + yTt φ2vt}4

I Conditional log-likelihood:
`(θ) =

∑N
i=1 logp(y (i)|u(i), v (i))−

∑N
i=1 logZ (u(i), v (i))− R

I Regularizer R = λ1‖θ‖2 + λ2‖φ1‖2 + λ3‖φ2‖2. Analogous to
zero mean Gaussian prior.

I Convex!

`(θ) cannot be maximized in closed form, use SGD...
2drawn i.i.d from the same stationary distribution
3parameter tying allows sequences of arbitrary length
4u, v, and y are assumed to have (i) superscripts



Parameter Estimation in Multiview CRFs

SGD: pick a training sequence at random, do θ ← θ + α · ∇`(θ)

Stochastic Gradient Updates

I ∂`
∂θ =

∑T
t yt · yTt−1 −

∑
t

∑
y ′,y ′′ y

′ · y ′′Tp(y ′, y ′′|x)− λ1
2N θ

I ∂`
∂φ1

=
∑T

t yt · uTt −
∑

t

∑
y ′ y
′ · uTt p(y ′|u, v)− λ2

2Nφ1

I ∂`
∂φ2

=
∑T

t yt · vTt −
∑

t

∑
y ′ y
′ · vTt p(y ′|u, v)− λ3

2Nφ2

REMEMBER: All yt are one-hot vectors, so
∑T

t yt · yt−1 is a k × k
matrix of counts of all label transitions in the sequence!
And

∑
y ′ y
′ · uTt p(y ′|u, v) is a k × d1 matrix of vt repeated and

scaled row-wise by p(y ′|u, v)



Parameter Estimation in Multiview CRFs

Runtime of SGD
Notice ALL edge and node marginals p(y ′, y ′′|u, v), p(y ′|u, v) are
needed for every step. Forward-Backward is O(TK 2) per training
sequence. Likelihood and gradients calculations O(TK 2) per step.
So runtime is O(TK 2G ), G number of steps.

2nd order approximation methods like BFGS would be require
fewer steps than SGD...

SGD in CRFs requires O(T) inferences per step

At every SGD step, all edge and node marginals need to be
inferred. Even though linear chains amenable to exact inference,
b/ it needs to be done so frequently, use faster approximations like
MCMC or variational methods, and leverage sparsity 5

5If we did batch gradient descent, we would need to do inference N times
per step, completely intractable



Parameter Estimation in Multiview CRFs

Algorithm for parameter estimation

repeat
choose (u(i), v (i), y (i)) from training sequences at random
∀(y ′, y ′′), compute and store p(y ′, y ′′|u(i), v (i)) via inference
∀(y ′), compute and store p(y ′|u(i), v (i)) via inference
for all all parameters θ do

θ ← θ + α · ∇`(θ)
end for

until convergence
Infer y∗ the Viterbi tagging on held-out test data



Extensions: Hidden Conditional Random Fields

Subphones

CRF augmented with hidden states that model mixture
components mt and subphones st . We don’t need to know phone
boundaries.6

Figure 1: An instance of Viterbi labeling from an HCRF showing a phone
sequence p0, p1 composed of a state sequence s together with mixture
components m. s’s and m’s are hidden variables and must be
marginalized out in learning and inference.

6see Sung and Jurafsky: https://web.stanford.edu/ jurafsky/asru09.pdf



Extensions: Multiview Hidden Conditional Random Fields

Figure 2: We propose augmenting HCRFs for phone recognition with
multiview data: MFCC acoustic as well as articulatory data.
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