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Abstract

This study surveys state of the art methods for scalable multi-view representation
learning. We compared kernel and deep neural network techniques for canonical
correlation analysis (CCA) to learn representations for each view that jointly max-
imize total correlation, as well as split autoencoders that attempt to learn a shared
representation of the views. We compared these various methods’ performance on
the Wisconson X-Ray Micro Beam dataset in terms of classification accuracy and
also quality of clusters in the new representation. All of our deep learning was
implemented in Google’s newly released TensorFlow library, which obviated the
need for explicit gradient computation.

1 Introduction

It is common in modern data sets to have multiple views of data collected of a phenomenon, for
instance, a set of images and their captions in text, or audio and video data of the same event. If
there exist labels, the views are conditionally uncorrelated on them, and it is typically assumed that
noise sources between views are uncorrelated so that the representations are discriminating of the
underlying semantic content. To distinguish it from multi-modal learning, multi-view learning trains
a model or classifier for each view, the application of which depends on what data is available at
test time. Typically it is desirable to find representations for each view that are predictive of - and
predicted by - the other views so that if one view is not available at test time, it can serve to denoise
the other views, or serve as a soft supervisor providing pseudo-labels. The benefits of training on
multiple views include reduced sample complexity for prediction scenarios [1], relaxed separation
conditions for clustering [2], among others [3][4][5].

Canonical Correlation Analysis (CCA), developed by Hotelling in 1936, is a widely used procedure
motivated by the belief that multiple sources of information might ease learnability of useful, low-
dimensional representations of data. Specifically, CCA learns linear projections of vectors from
two views that are maximally correlated [6]. While CCA is affine invariant, the representations it
learns are not sufficient for data that lies on a manifold. We apply a scalable1 extension of kernel
CCA (KCCA) with Gaussian and polynomial kernels. However, kernel methods scale poorly in
both feature dimension (a dot product or norm is required) and number of samples (Gram matrix is
polynomial in size). To remedy this, we apply deep methods, which enjoy learning a parametric form
of a nonlinear target transformation. Those methods described in Arora et al are split autoencoders

1Although the dimension of the XRMB data is on the order of 102, the number of samples (≈ 50,000)
would force the Gram matrix to exceed memory capacity
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Figure 1: SplitAE and DCCA network architecture diagrams.

(SplitAE)2, deep CCA (DCCA), and deep CCA autoencoders (DCCAE) to the multiview data in
XRMB for the purpose of speech recognition [7].

We investigate the enhancement of phonetic recognition by learning a transformation of acoustic fea-
ture vectors (the primary view) informed by articular data (a second view only available at training
time). This experimental setting is motivated by previous work, where it was found that articulatory
data is a qualified view of speech content that is usually only available in training settings [8].

2 Related Work

2.1 Canonical Correlation Analysis

CCA can be interpreted as an extension of principle component analysis to multiple data sets with the
added constraint that the principle components learned in each subspace are maximally correlated.
Concretely, given n observations (xi, yi), xi ∈ Rdx and yi ∈ Rdy comprising two views of data
X , Y described by an unknown joint distribution D, find k pairs of vectors (uj , vj) of the same
dimensions to

max correlation(u>i x, v
>
i y) (1)

subject to the constraint that (uj , vj) is uncorrelated to all other (ur, vr), j 6= r, 1 ≤ j ≤ k. After
finding the first pair (u1, v1), subsequent pairs are found via deflation of the views subject to the
uncorrelation constraint above. Expanding the definition of correlation for the vectors ui and vi:

max
ui∈Rdx ,vi∈Rdy

E(x,y)∼D
[
u>i xy

>vi
]√

Ex[u>i xx
>ui]Ey[v>i yy

>vi]
(2)

Note that scaling of ui or vi does not change the objective, therefore the variance of u and v can be
normalized to one. Expressed equivalently for all u and v to be learned,

max
U∈Rdx×k,V ∈Rdy×k

E(x,y)∼D
[
trace

(
U>xy>V

)]
subject to E[U>xx>U ] = I,E[V >yy>V ] = I

(3)

2As described later, SplitAE reconstructs each view from a shared representation, which is not correlation
analysis
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Solving for u and v using the Lagrange multiplier method, linear CCA takes the form of a gener-
alized eigenvalue problem, for which the solution is a product of covariance3 and cross-covariance
matrices [9]: U is the top k left eigenvectors (sorted by decreasing eigenvalue) of C−1xx CxyC

−1
yy Cyx,

which when regularized becomes (Cxx + rxI)−1/2Cxy(Cyy + ryI)−1/2Cyx(Cxx + rxI)−1/2. The

i’th column of V is then chosen as
C−1

yy Cyxui√
λi

, which is regularized similarly.

A second interpretation of CCA is that optimal U and V projection matrices minimize the squared
error of reconstructing x (respectively, y) given y (resp. x). Hence, the optimization problems given
in Equations 1, 2, 3, and 4 are all equivalent (for i = 1...k, where applicable).

min
U∈Rdx×k,V ∈Rdy×k

E(x,y)∼D
[
‖U>x− V >y‖22

]
subject to E[U>CxxU ] = Ik,E[V >CyyV ] = Ik

(4)

There are a number of settings to which CCA, and all correlation analysis variants, can be applied.
The first is when all views are available at test and train time. The second is when only a non-empty
subset of the views is available at test time. Either of these settings can be enhanced by labels.

2.2 Kernel CCA

KCCA by Akaho et al generalizes the transformations learned by CCA to nonlinear functions living
in a reproducing kernel hilbert space (RKHS), making it suitable for manifold learning. GivenF and
G are function classes living in reproducing kernel hilbert spaces reserved for X and Y respectively,
the goal is to find two sets of k functions, {f1, ..., fk} : Rdx → R, {g1, ..., gk} : Rdy → R such that
for any i, fi and gi minimize the squared error of reconstructing each other in the RKHS. That is,
given x ∈ X and y ∈ Y , f and g are maximally predictive of, and predictable by, the other,

min
U∈Rdx×k,V ∈Rdy×k

E(x,y)∼D
[
‖fi(x)− gi(y)‖22

]
subject to E[fi(x)fj(x)] = δij ,

E[gi(y)gj(y)] = δij

(5)

for δij an indicator random variable that assumes one if i = j and zero otherwise. We will also
introduce equivalent interpretations similar to the above: maximize the correlation of f(x) and g(x)
or maximize the covariance E(x,y)∼D [fi(x)gi(y)] with the same constraints as Equation 5. As
before, every pair of functions (fj , gj) is uncorrelated with all other pairs of functions for all k.

For n data vectors from each of X and Y , the Gram matrices Kx and Ky from Rn×n can be con-
structed4 given a positive definite kernel function κ(·, ·) : X × Y → R which is by construction
equal to the dot product of its arguments in the feature space5, k(u, v) = Φ(u)>Φ(v) for a nonlinear
feature map Φ : Rd → H . It is a property of an RKHS that each of its constituent functions f
and g from each view can be represented as a linear combination of the n observed feature vec-
tors, fi(x) =

∑n
i=1 α

(i)
j κ(x, xj) = αKx(x). Similarly, gi(y) = βKy(y). Mirroring arguments

from CCA6, minimizing the objective in Equation 5 is equivalent to maximizing trace
(
α>KxKyβ

)
where E [fi(x)fj(x)] = 1

nα
>
i K

2
xαj . Absorbing the 1

n into α, Equation 5 can be interpreted as

max
α∈Rn×k,β∈Rn×k

trace α>KxKyβ

subject to α>K2
xα = Ik,

β>K2
yβ = Ik

(6)

3For numerical stability, a scaled identity matrix is added to a covariance matrix before it is inverted
4e.g. [Kx]ij = κ(xi, xj). Note also that the matrices are assumed to be centered
5known as the kernel trick
6An unconstrained KCCA objective can be written by moving the square root of the product of the con-

straints in Equation 6 to the denominator and removing the trace operator as in Equation 2.
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As before, α can be solved as a generalized eigenvalue problem, whose regularized solution is
α = K−1x KyK

−1
y Kx and the ith β vector is β(i) = 1

λi
(Ky + ryI)−1Kxα. This solution takes

O(n3) time and O(n2) space. When k << n, it is wasteful to compute all n columns of α and
β. Scalable implementations of KCCA employ rank-m approximations of the eigendecompositions
that give the solutions to α and β.

The primary drawback of KCCA is its nonparametric form, which requires α to be stored for use on
all unseen examples (test sets). Also, computation of dot products for the kernel functions cannot
be avoided; O(n2) of these dot products are needed at training time. The binding of each instance
of KCCA to a specific kernel also limits the function class of our solution. In high dimensional
settings, KCCA is also susceptible to overfitting, that is, learning spurious correlations. A remedy is
to regularize with a scaled identity matrix those Gram matrices to be inverted as in Equation 7. The
regularization parameters also need to be tuned.

max
α∈Rn×k,β∈Rn×k

α>KxKyβ√
(α>K2

xα+ rxα>Kxα)((β>K2
yβ + ryβ>Kyβ))

(7)

The regularized solution for α is the top eigenvectors sorted by decreasing eigenvalue of the matrix
(kx + rxI)−1Ky(Ky + ryI)−1Kx and the ith β vector is as before.

2.3 Split AutoEncoders

The work of Ngiam et al on multimodal autoencoders introduced a deep network architecture for
learning a single representation from one or more views of data [10]. This was later followed up by
Wang et al with applications to the Wisconsin X-Ray dataset, as well as a constructed multi-view
version of the MNIST data set [7]. The goal of deep autoencoder architectures in multiview learning
is to find some shared representation that minimizes the reconstruction error for all views. These
deep autoencoders can take as input one or many views at the same time, depending on which are
available for testing. For the sake of this paper, we will restrict ourselves to two views.

There are two architectures given by Ngiam et al that find a shared representation of two views. [10]
The dataset used to train these have two views available at train time and one view available at test
time, as is the case with the XRMB dataset that we are using in this paper.

min
Wf ,Wg,Wp,Wq

1

2

N∑
i=1

(‖xi − p(f(xi))‖2 + ‖yi − q(g(yi))‖2) (8)

The first architecture trains using information from both views, minimizing Equation 8 which is the
sum of the L2 Norm of the reconstruction for both views. Both inputs are fed into the autoencoder
separately and go through multiple hidden layers before being combined into a shared hidden layer
representation of the two views. The decoders are then symmetrical to the encoders. At test time,
all of the weights from the decoder of the view not available at test time are ignored, and the shared
hidden layer representation calculated from the single view available is used.

min
Wf ,Wp,Wq

1

2

N∑
i=1

(‖xi − p(f(xi))‖2 + ‖yi − q(f(xi))‖2) (9)

The second architecture, used by Wang et al, has a single encoder that takes as input the view
available at train time. It then attempts to learn a shared representation and sets of weights that can
reconstruct both views. The decoder for the view available at test time is symmetric to the encoder.
The decoder for the view that’s only available at train time can be a multilayer decoder or a single
layer decoder that is experimentally tuned for number of layers and nodes.

2.4 Deep CCA

Deep CCA, introduced by Andrew et al [2013], is a parametric technique to simultaneously learn
nonlinear mappings for each view which are maximally correlated. It is similar to KCCA in that
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both are computing nonlinear mappings to maximize canonical correlation between views. However,
KCCA has a significant cost in that KCCA requires large kernel matrices which may not often be
practical. DCCA on the other hand computes the nonlinear mappings using deep neural networks,
which are capable of representing nonlinear, high-level abstractions on top of the input data. The
use of neural networks makes DCCA much more scalable than standard KCCA, as the size of the
network is not tied to the size of the dataset.

Given views X and Y , DCCA learns representations F and G such that F=f(X) and G=g(Y )
where f and g are the transformations computed by two deep neural networks, which are described
by network weights wf and wg respectively. DCCA trains f and g according to the following
objective, which maximizes the canonical correlation at the output layer between the two views.

max
U,V,wf ,wg

1

N
tr(UTFGTV )

s.t. UT (
FFT

N
+ rxI)U = V T (

GGT

N
+ ryI)V = I

(10)

3 Experimental Methods

The Wisconsin XRMB corpus [11] contains two views of data recorded simultaneously of multiple
speakers pronouncing certain English words; the feature vectors of the first view are 273 dimen-
sions long, while those of the second view are 112 dimensions. The first view consists of acoustic
data, primarily MFCC features that were manually computed, and the second view consists of data
collected from sensors placed on the speakers’ tongue and face. All views were mean centered and
normalized to unit variance.

For the purpose of this survey, we used a subset of the data and did all of our parameter tuning
and testing on the data for one specific speaker (JW11). In all experiments, the training data from
view one was projected onto the top k principle components learned by CCA L = U ′k ∗ Xtrain
(or encoded into the k-dimensional shared representation in the case of SplitAE). These learned
representations were then stacked onto the baseline acoustic features (computed as the middle 39
dimensions of the 273 dimensional acoustic vector).

Lastly, we evaluated our stacked feature vectors using the MATLAB built-in KNN classifier. As a
baseline, K-NN was trained on the the un-projected view one data and tested on the respective test
set.

3.1 Kernel CCA and Scalable KCCA

A gaussian kernel with variance for the first view being 1200 and that for the second view being
4800 was found to be the best that we tried. The data was randomly partitioned into a training set
of 25,000 examples, a developmental set of 10,000, and a test set of 15,000. We implemented a
scalable version of KCCA that does not require storing an entire Gram matrix at any point in time;
only the alpha matrix, which is n× k for n training examples. It was extremely time consuming to
tune KCCA, and it is likely that given the time constraints, our parameters are somewhat suboptimal.

3.2 Split AutoEncoders

We implemented the shared representation autoencoder using the second architecture described in
Section 2.3. This is the design in which one view is used as input into the autoencoder, and a shared
representation that can best reconstruct both views is found.

The encoder of the first view consists of three hidden layers of rectified linear units and a linear
output layer (the shared representation hidden layer). The rectified linear hidden layers each have
1500 nodes, while the output dimensionality is 50. In general the larger the width of the hidden
layers, the better the autoencoders performed. The dimensionality was tuned over {30, 50, 70}
while the hidden layer width was tuned over many values between 1 and 1500.

The decoder of the first view is symmetric to its encoder. The decoder for the second view consists
of two linear layers with dimensionality 50 and 75, respectively. The number of hidden layers was
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tuned between 1 and 3 and the width of each layer over values between 1 and 112, the latter being
the dimensionality of the second view. We used the RMSProp Algorithm to train SplitAE with a
learning rate of 0.0001 and a decay of 0.99.

After training the autoencoders in an unsupervised fashion, we fine-tuned the encoder weights using
a single-layer linear classifier at the shared representation layer. The labels were one-hot encoded
and the linear classifier was trained using the Adam Method of Stochastic Approximation, as pro-
posed by Kingma & Ba, with a learning rate of 0.0001 [13]. Errors from the linear classifier were
backpropagated across the entire encoder to update weights. This made the encoder more specific
to the task of phone classification. Whereas in a completely unsupervised setting, we would have
fixed the weights with no fine-tuning and sacrificed classification error for generalization.

All training was done in mini-batches of 100 instances each, while tuning accuracy was computed
over the entire tuning dataset (full-batch).

3.3 Deep CCA

We implemented DCCA as described above, where given two views, we learn a high-level represen-
tation for each view using a neural network, such that canonical correlation between the representa-
tions of the two views is maximized.

Both networks consisted of three hidden layers, each containing 1500 ReLU nodes. The final output
layer was of dimensionality 50. Canonical correlation between the output layers was maximized
specifically for a subspace of dimensionality 40.

Training DCCA is challenging as unlike traditional deep learning objectives, this one depends on
the covariance of the output layer. To efficiently train, we used the stochastic approach described
by Wang et al [2015]. As our cost function is defined in terms of the CCA of the output layers, we
approximated CCA using minibatches of size 20, and learned U and V for that batch. Given U and
V we then optimized the cost function for that batch using the Adam optimization algorithm with a
learning rate of 0.000001.

During the training process we used a dropout rate of 0.9 for the input layer and 0.8 for all hidden
layers, but set these values each to 1.0 for evaluation on test data.

Having learned the network weights, we then fine-tuned the network by adding a softmax classifying
layer on top of the output of the MFCC layer, concatenated with the 39 dimensional baseline acoustic
data. The fine-tuning was optimized also using Adam, this time with a learning rate of 0.0001.

4 Results and Discussion

Method % Test Accuracy

Baseline K-NN 79.70
CCA 83.20
KCCA 77.60
SplitAE 84.58
DCCA 84.94

Table 1: Accuracy achieved with best parameters for each correlation analysis method implemented.
For CCA and KCCA, the best k was found to 60, and the number of neighbors for K-NN was 4.
The size of the output layer of splitAE and DCCA was 50. The authors believe that KCCA requires
more tuning.

The performance of the baseline K-NN classifier is admirable, however the techniques implemented
here are able to uncover more semantic content. Although only one speaker was used in these
experiments, it is clear that deep methods outperform kernel and linear CCA techniques in discerning
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phonemes from speech. The choice of kernel constrains the class of functions which can be learned
by KCCA, and the parameters associated with the kernel can be difficult to optimize given the
time complexity of running a single batch. It is the opinion of these authors, supported by recent
work by Arora et al, that correlation based learners should outperform autoencoders because their
explicit objective is to maximize predictability of each view from the other, rather than maximizing
reconstruction of the inputs. However, it is difficult reduce these claims to practice based on the ease
at which highly accurate neural nets can be learned.

While the autoencoder may not have found a shared representation that displayed any correlation
amongst the views, it still managed to cluster the data fairly well into the various phoneme groups.
We ran the test data through the encoder and saw that it still maintained most of the same clusters,
with the exception of the very center in which small clusters tended to become closer to noise than
well clustered phonemes. Overall, the autoencoder performed very well when fine-tuned to the
task of classification. A future direction for work, as explored by Arora et al, would be to impose
correlation constraints onto the autoencoders. In their paper, they propose correlated autoencoders
as one such example of this correlation component added to the autoencoder objective.

DCCA was the best performing method, especially when one considers the memory and runtime
costs in addition to accuracy. It is quite telling that it was able to get better accuracy than KCCA
with roughly one third the runtime, and significantly lower memory usage. We were able to achieve
good separation between clusters of the learned representations for the training data in the first view.
However, we found that for the test data, the clusters were much less cleanly separated, which
indicates that the model was overfitting. This disparity is especially apparent when compared to
SplitAE’s t-SNE plots. One expalanation for this is that SplitAE was trained with a dropout of 0.8
for the input and 0.5 for the hidden layers, while DCCA was trained with 0.9 for input and 0.8 for
hidden. A higher retention rate means that the model is less sparse, and given the high dimensionality
of the hidden layers, more likely to overfit as a result. It’s quite likely based on these results that with
more tuning, we might be able to prevent this overfitting and improve DCCA’s overall performance.

DCCA is also a fairly simple model, so there are many improvements one could make to further
improve accuracy. For example, we are currently initializing the weights randomly, but it might
be useful to pretrain the networks as autoencoders. One could take this idea even further to DC-
CAE, which essentially consists of an autoencoder on each view, with canonical correlation of the
bottlenecks maximized.

Finally, it’s worth noting that traditionally DCCA is very hard to train. The derivation of the gradient
is difficult and fairly complicated. However, we were able to make use of Google’s recently released
TensorFlow to make this much easier. We can define U and V as placeholders, and define our cost
function in terms of those, filling in U and V based on the batch CCA. TensorFlow can then perform
gradient steps on the network given just the cost function defined in terms of as of yet undefined U
and V. This means that we can avoid having to find the gradient ourselves which makes the process
much easier from an implementation standpoint.
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(a) CCA Train (b) CCA Test

(c) KCCA Train (d) KCCA Test

(e) SplitAE Train (f) SplitAE Test

(g) DCCA Train (h) DCCA Test

Figure 2: Comparison of t-SNE (perplexity 100) clustering on learned representations for CCA,
KCCA, SplitAE, and DCCA
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