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Abstract

Knowledge bases are an effective tool for
structuring and accessing large amounts
of multi-relational data, but they are often
woefully incomplete, especially in broader
domains. We consider the task of learning
low dimensional embeddings for Knowl-
edge Base Completion and make the fol-
lowing contributions: 1) a novel embed-
ding model, ModelE-X, that uses few pa-
rameters yet outperforms many state-of-
the-art, more complex algorithms, 2) the
realization that the often-unreported met-
ric of relation ranking yields valuable in-
sights into algorithms’ behavior and 3) we
scrutinize macro vs. micro-averaging of
ranking metrics and discuss which is a bet-
ter indicator of generalizability.

1 Introduction

Knowledge Bases (KBs) represent structured in-
formation in a way that is convenient for inference
and computation. Internet companies leverage
KBs to improve search results on factoid queries,
such as Google’s Knowledge Vault (Dong et al.,
2014), Microsoft’s Satori (Nickel et al., 2015) and
are indispensable for tasks like question answer-
ing (Fader et al., 2014; Yih and Ma, 2016; Yao and
Van Durme, 2014; Xu et al., 2016)

Personalized agents, ”infobots”, and read-
ing comprehension engines perform complicated,
multi-hop inference over vast amounts of facts.
Researchers have approached this challenge with
deep learning models which rely on vector encod-
ings of facts, making knowledge representation
learning a critical and relevant task (Shen et al.,
2016; Hermann et al., 2015; Weston et al., 2014).

A KB defined over a schema of E entities
from a set E and R relations from a set R is

a set of triples T = {(h, r, t)} where h, t ∈
E , r ∈ R, which can be interpreted as a knowl-
edge graph (KG) with edge labels from R and
node labels from E . An embedding for h is de-
noted eh ∈ Rd, which are used interchangeably.
Knowledge bases over any useful domain are in-
complete, as they are often constructed by hand
or semi-automatically (Socher et al., 2013; West
et al., 2014). Knowledge Base completion (KBC)
is a well-studied task of determining which triples
ought to be in the KB, which is inherently a rank-
ing problem.

There are three main categories of KBC al-
gorithms: those which learn from only one-hop
triples in T directly, those using deeper structure
or multi-hop paths in the KG, and those leverag-
ing textual resources with entity linkers and other
NLP machinery. Deep learning has been applied
to all three categories.

2 Knowledge Base Completion

Here we primarily discuss embeddings or latent
feature models for KBC, which learn dense pa-
rameterizations of entities and relationship oper-
ators and are adept at modeling global patterns in
large, noisy KGs (Nickel et al., 2015). Modern
KB schemas define potentially millions of entities
and billions of facts. Having a fixed d-dimensional
embedding of each entity 1) simplifies storage re-
quirements, 2) allows for natural comparisons be-
tween entities and 3) a mathematical structure for
interpreting relationships as linear algebra opera-
tors over entities, which allows for capturing long-
range structural information in the KG (Bordes
et al., 2011).

The framework for traditional automatic KBC
algorithms use the same machinery: in addition
to learning embeddings and operators, each model
typically defines a scoring function f(h, r, t) of



a triple over those embeddings, a pairwise mar-
gin ranking objective1, and a method of sam-
pling “false” triples under the somewhat unrealis-
tic “closed world” assumption that any triple not in
the overall KB is untrue. The following loss func-
tion contrasts positive and negative triples (regu-
larization term omitted)

L(ALG) =
∑

p∈T ,n/∈T

[γ + fALG(p)− fALG(n)]+

and is minimized by mini-batch gradient descent
over (p, n) pairs where p = (h, r, t) is a sampled
positive triple, n ∈ {(h′, r, t), (h, r′, t), (h, r, t′)}
is a sampled negative triple with exactly one slot
corrupted s.t. n /∈ T , and [·]+ = max(0, ·) In
our case, whenever we sample p, we also add all
three corrupted versions of it independently and
uniformly at random.

We evaluate the model on the Link Prediction
task, which is to predict, say, the best h given r
and t to yield a triple that is most likely to be-
long the KB2. A list of scores is generated by ap-
plying fALG(h

′, r, t) ∀h′ ∈ E , which, upon sort-
ing, hopefully yields a highly-ranked h that makes
the triple true. The loss attempts to concentrate
mass on observed triples, but it provides only a
rough approximation to the ideal list (specifically,
it might not score obviously incorrect triples any
lower than partially incorrect triples, as long as
the positive triple is scored above both). We re-
port several ranking metrics: Mean Rank, Me-
dian Rank, Mean Reciprocal Rank (MRR), and
Hits@10 (Hang, 2011). In practice not all h′ ∈ E
should be included in the list, only those for which
it is known (h′, r, t) /∈ T so that the model isn’t
penalized for ranking one correct answer over an-
other; this is known as the “filtered” (as opposed
to “raw”) metric.

3 Prior and Related Work

There are a number of models that approach KBC
as a tensor or matrix factorization problem (Nickel
et al., 2011, 2012; Wang and Cohen, 2016) which
inspired others to define entity and relation spe-
cific embeddings (Bordes et al., 2011; Socher
et al., 2013; Garcia-Duran et al., 2015). We dis-
cuss only those models we re-implement as part

1Toutanova et al. (2015); Toutanova and Chen (2015) in-
stead maximize the conditional log likelihood, but the pair-
wise ranking loss is more scalable.

2Simiarly we also predict the best r or best t.

of this work, and we refer the reader to the canon-
ical works of Riedel et al. (2013); Bordes et al.
(2013).

ModelE defines two vectors in Rd for each rela-
tion to allow only certain entities in the head and
tail position of a triple. That is, for the score of
a triple to be high, both the head and tail entities
must align with their respective relation embed-
dings components rh and rt (Riedel et al., 2013):

fModelE(h, r, t) = eh
Trh + et

Trt

It hasEd+2Rd parameters, and aims to give high
scores to true triples. Inspired by the semantically
meaningful translations of word embeddings, the
TransE model on a positive triple (h, r, t) learns
embeddings such that eh + r ≈ et (Bordes et al.,
2013)

fTransE(h, r, t) = ‖eh + r − et‖

It has Ed + Rd parameters and seeks a low score
for positive triples. For Bilinear (DistMult) and
BilinearDiag (Yang et al., 2014), each relation r
is parameterized by Wr ∈ Rd×d (which is con-
strained to be diagonal for BilinearDiag).

fBilinear(h, r, t) = eh
TWret

Bilinear has Ed + Rd2 parameters, which can be
quite slow and prone to overfitting.

A parallel approach to KBC utilizes features
in the structure of the graph, particularly paths
therein, and train on multi-hop path queries,
where, for example, the appropriate tail entity is
sought after starting at a head entity and travers-
ing a path of relations (Guu et al., 2015), some-
times with a notion of a path probability (Lao
et al., 2011; Lin et al., 2015). Some models
like TransE and Bilinear are naturally composi-
tional and suited for this setting (Garcıa-Durán
et al.), other times heavier compositional models
like LSTMs are employed (Neelakantan et al.,
2015). There is another very important com-
munity devoted to leveraging textual mentions of
KB triples (Toutanova et al., 2015; Han et al.,
2016; Wang and Li, 2016; Wang et al., 2014;
Weston et al., 2013). More recently, sophis-
ticated deep learning approaches such as Rea-
soNet(Shen et al., 2016) inspired by memory neu-
ral networks(Weston et al., 2014) have been ap-
plied to KBC(Shen et al., 2017). And, log-linear
models have shown outstanding performance con-
sidering their simplicity (Toutanova et al.)



4 Our Approach

We introduce a novel vector parameterization of
entities and relations inspired by ModelE, which
we name ModelE-X (Model-E Extended)3. Like
ModelE, ModelE-X also defines two relation vec-
tors, but provides three enhancements that im-
prove expressiveness and flexibility:

fModelE−X(h, r, t) = ‖eh � rh − et � rt‖

where � is elementwise vector multiplication
(again a true triple should score high).

1. ModelE-X modulates the response of a re-
lation component (e.g. rh) to its argument
at a much finer granularity than a simple dot
product due to the lack of a sum in element-
wise product (inspired by the gates of an
LSTM)

2. Whereas ModelE can mistakenly give a high
score to a false triple if one of the two dot
products is high enough, ModelE-X requires
the two response vectors to be similar, which
is much less likely to occur spuriously.

3. We allow any choice of dissimilarity metrics,
like `1 or `2, between response vectors (`1
works better in practice).

These advantages come without any sacrifice to
complexity or runtime (Ed+ 2Rd parameters).

Along a similar vein, we questioned whether
an element-wise relation operator was too simple,
and perhaps a separate matrix for the head and tail
arguments was needed. We introduce “ModelE-
XL” (Model-E Extended, Linear)

fModelE−XL(h, r, t) = ‖W h
r eh −W t

ret‖

as the natural generalization of ModelE-X (it re-
duces to ModelE-X if W h

r and W t
r are diagonal).

Both ModelE-X and ModelE-XL give high scores
to true triples.

5 Experiments

See Bordes et al. (2013) for a description of the
FB15k dataset we use. We re-implemented many
canonical algorithms to eliminate sources of error
when comparing results.

3We make our code, experiments, and logs available at
www.ANONYMIZEDLINK.com.

We tuned the margin γ over
{0.2, 0.5, 1.0, 1.5, 2.0}, we set the dimension
d of entity and relation embeddings to be 100
in all the models we implement except Bilinear,
which was 50, but we acknowledge that nearly
all models improve with more dimensions4 We
choose between `1 and `2 dissimilarity metrics,
but in nearly every case `1 was superior (and
faster).

We ran minibatch gradient descent with a batch
size of one one-hundredth the size of the training
set, with constant step size for up to 500 epochs,
with early stopping if MRR did not improve after
30 epochs. We ran the dev set every 10 epochs.
We re-normalized all entity embeddings to unit `2
norm after every minibatch, and we regularized
relation-specific parameters with `2 norm (a reg-
ularization coefficient of 0.01 was satisfactory).

6 Results and Discussion

The “Micro” partition of Table 1 shows that
ModelE-X outperforms or is competitive
with state-of-the-art embedding models such
as STransE (Nguyen et al., 2016) and more
sophisticated algorithms that consider ex-
pensive path training (PTransE) (Lin et al.,
2015) or hand-crafted log-linear features
(Node+LinkFeat) (Toutanova et al.), and deep
models (IRN) (Shen et al., 2017). These models
are more expensive to train as they require more
parameters, more samples, or human intervention.

In addition to our new model, this paper calls
attention to how the community evaluates KBC
algorithms. Virtually no publications report rela-
tion ranking metrics, which we argue is an over-
sight because it is so easy to obtain. For example,
Table 1 suggests that in the usual micro average
setting, weaknesses in TransE and BilinearDiag
become more readily apparent based on relation
metrics rather than entity ranking metrics alone,
since they attain relatively higher Mean Ranks
and lower MRRs, while their entity Hits@10 and
MRRs do not raise concern. These weaknesses be-
come even more apparent in the macro case. Re-
lation ranking also reveals that Bilinear and Mod-
elE (and ModelE-X) behave more similarly than
previously thought, as they have similar MRR and
Hits@10 on relations in both the macro and micro

4For instance, Toutanova and Chen (2015) achieve
Hits@10 = 79.7 for Bilinear with d = 500 and Yang et al.
(2014) achieve Hits@10 of 57.7 for d = 100, which we cor-
roborate.

www.ANONYMIZEDLINK.com


Micro Averages
For Each Method

Mean Rank Median Rank MRR (×100) Hits@10 (%)
Rel Entity Rel Entity Rel Entity Rel Entity

Unstructured NA 1074 / 979 NA - NA - NA 4.5 / 6.3
UnstructuredDot* NA 1172 / 1077 NA 377 / 312 NA 2.9 / 3.83 NA 7.02 / 9.14
ModelE* 2.01 / 1.66 460 / 363 1 / 1 84 / 50 79.2 / 89.9 13.8 / 22.1 99.1 / 99.2 24.7 / 34.0
Bilinear* (50) 3.09 / 2.75 182 / 84.4 1 / 1 21 / 7 83.3 / 94.4 20.9 / 36.1 99.5 / 99.5 38.7 / 56.1
BilinearDiag* 7.06 / 6.74 229 / 129 2 / 2 33 / 17 54.1 / 56.8 15.0 / 23.3 89.9 / 90.8 30.8 / 42.5
TransE* 5.3 / 4.9 800 / 725 2 / 2 79 / 46 54.1 / 58.9 13.6 / 19.6 94.1 / 94.6 24.9 / 32.4

IRN (Shen 2017) - - / 38 - - - - - - / 92.7
PTransE - 207 / 58 - - - - - 51.4 / 84.6
STransE - 219 / 69 - - - 25.2 / 54.3 - 51.6 / 79.7
Node+LinkFeat - - - - - - / 82.2 - - / 87.0

Our ModelE-X* 2.89 / 2.56 186 / 82.5 1 / 1 16 / 5 77.6 / 86.4 23.6 / 40.6 97.1 / 97.3 43.3 / 62.9
ModelE-X* (200) 2.68 / 2.34 188 / 80 1 / 1 11 / 2 79.7 / 89.4 27.1 / 53.8 98.1 / 98.2 49.8 / 76.6
ModelE-X* (500) 2.37 / 2.04 168 / 55 1 / 1 9 / 1 79.5 / 88.4 29.3 / 64.4 98.4 / 98.5 53.4 / 83.4

Macro Averages
For Each Method

Mean Rank Median Rank MRR (×100) Hits@10 (%)
Rel Entity Rel Entity Rel Entity Rel Entity

ModelE* 4.72 / 4.08 151 / 129 4 / 3 13.5 / 9 54.7 / 66.6 25.9 / 34.5 93.7 / 94.3 47.9 / 56.5
Bilinear* 14.2 / 13.6 172 / 151 13 / 12 11 / 6 60.4 / 74.5 30.1 / 41.3 92.3 / 92.8 52.2 / 62.0
BilinearDiag* 53.7 / 53.1 284 / 264 50 / 49 41 / 33 14.8 / 15.9 15.9 / 19.8 35.1 / 36.2 30.6 / 35.3
TransE* 61.7 / 61.1 745 / 725 58 / 57 23 / 19 24.3 / 27.6 22.0 / 27.6 59.9 / 61.5 39.3 / 45.1

Our ModelE-X* 37.2 / 36.6 121 / 100 36 / 35 8 / 3.5 30.5 / 36.3 35.4 / 48.4 58.7 / 60.3 59.3 / 70.4
ModelE-X* (200) 38.9 / 38.2 151 / 129 37 / 37 6 / 2 38.5 / 46.6 38.7 / 56.9 69.1 / 70.2 64.2 / 78.7
ModelE-X* (500) 24.8 / 24.1 88 / 65 24 / 23 4.5 / 1 40.4 / 48.9 44.3 / 66.9 74.4 / 75.1 68.7 / 84.1

Table 1: Our ModelE-X is as simple as ModelE, yet is competitive or outperforms more sophisticated
models. ModelE-X excels when all relations are treated equally (macro averaging across relations).
Each value reports ”raw” / ”filtered” metrics on FB15k test set. Parenthesis indicate the embedding
dimension, else it is 100; the authors implemented models with an asterisk. Values reported in entity
columns represent the average of left and right entity ranking metrics; NA means “not applicable”, and
“-” means unreported.

cases. We note that relation ranking is useful in a
number of tasks related to KBC, such as relation
extraction from text (Mintz et al., 2009).

Nearly all publications report the micro-
averages of their metrics, that is, the weighted av-
erage w.r.t the frequency of relations in the test
triples. This might be an over-simplification, as
it is often unclear whether poor ranking perfor-
mance is a symptom of a skewed data distribu-
tion, or a sign the model truly lacks capacity to
capture relevant patterns. The macro average de-
couples these factors to allow for clearer insight
into the model’s behavior. It is common to report
performance on buckets of relation types (1-to-1,
1-to-Many, etc) (Bordes et al., 2013), or the macro
average across a handful of relations; however, to
get the most realistic perspective on how a model
will generalize to new relations, the macro average
should be used to treat all relations equally.

The macro average also reveals a massive dis-
crepancy in TransE’s relation metrics. TransE
has been known to struggle with relationships that

aren’t 1-to-1 (Bordes et al., 2013), but the mi-
cro average clearly masks this systemic weakness
behind a distribution of relationships TransE can
grasp. Interestingly, ModelE and ModelE-X ben-
efit from macro over micro rankings, at least w.r.t
MRR and Hits@10 (bolded bottom row), suggest-
ing that these models are adept at general reason-
ing across an entire schema.

Lastly, we challenge the common assumption
that models trained to rank entities will have also
learned to rank relations well. We compared two
ModelE-X (300)’s where the loss function of the
first did not include relation ranking, but the sec-
ond did, all else being equal. Contrary to the
belief of many, the first model suffered horren-
dously when tested on relation ranking: the first
model had a filtered Rel Hits@10 of 51.7% (mi-
cro), whereas the second reported 98.1%. Sim-
ilarly for the macro-averaged Rel metrics: the
first model was 4.45% vs. 69.7% for the second.
Clearly, good entity ranking does not imply good
relation ranking.
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