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Abstract

This paper summarizes the most impactful literature of online decision tree
(ODT) algorithms. Except for the introduction and conclusion, and the manner
in which the work of other authors is presented, this paper is by no means
original. Some algorithms are discussed more fully than others based on their
novelty and relevance. It is written for Dr. Raman Arora in the Johns Hopkins
University Computer Science Department to set the foundation for researching
new algorithms.

1 Introduction

The purpose of online learning algorithms is to learn a concept from a streaming
input of examples without assuming any underlying distribution, and hopefully with-
out any dependence on the order, rate, or noisiness of the examples. Unlike batch
algorithms such as ID3 and C4.5, which have access to all the examples in memory1,
online algorithms only learn incrementally–viewing each example only once and then
discarding it. Online decision tree (ODT) algorithms attempt to learn a decision
tree classifier from a stream of labeled examples, with the goal of matching the per-
formance (accuracy, precision, recall, etc) of a related batch decision tree learning
algorithm with reasonably expeditious runtime, or at least no slower than running a
batch algorithm.2

The naive ODT learning algorithm is to re-run a canonical batch algorithm, like
C4.5, on the collection of examples seen so far whenever a new example is delivered.

1or disk algorithms like SLIQ and SPRINT, which store and re-read examples from disk
2Runtime has varied definitions for ODT algorithms depending on their behavior. Often the

“update” time for handling a single example is quite small, but offset by requiring more examples
to reach an optimal decision tree [18], and depending on factors like concept drift, some ODT’s
make expensive tree manipulations with irregular puntuality. So runtime must account for update,
punctual, and global resource expenditures. Curiously, the author has not seen amortized analysis
employed often in runtime analyses, although it seems natural to do so.
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Bear in mind the problems hindering this naive approach often haunt more sophis-
ticated algorithms: the algorithm becomes too expensive to compute under high
streaming rates or if it is forced to consider every example; the algorithm may require
more examples than its non-incremental cousin to reach a stable concept; the algo-
rithm may accumulate outdated concepts that decrease performance; the algorithm
may not react quickly enough to rapidly changing concepts; the algorithm could be
susceptible to noise, missing data, overfitting, or adversarial orderings of input data
(resulting in “thrashing” that render a concept unlearnable); and finally, the concept
to be learned may depend on an unknown minumum number of attributes. Of course,
the practical impetus for streaming algorithms is that the sheer quantity of data gen-
erated in the modern era (avoiding the term “big data”) often cannot fit in main
memory. Thus, one would “prefer an incremental algorithm, on the assumption that
it is more efficient to revise an existing hypothesis than it is to generate a new one
each time an example is observed” [20]. The algorithms summarized in the (mostly)
chronologically ordered sections below address the aforementioned problems; it turns
out that concept drift, or the non-stationarity of a distribution over time, is most
formidable [19].

It should be noted that the data mining field has taken interest in making ODT al-
gorithms scalable, distributed, and memory efficient, often contributing more to the
field than machine learning researchers. The more recent papers introduce fewer
groundbreaking algorithms like VFDT, but rather optimize them for large disk-
resident datasets, augment them with better pruning or sampling paradigms, or im-
plement an ODT algorithm in the context of a parallel programming model. Lastly,
although not discussed here, investigating neural networks promises to be equally
fruitful for streaming algorithms.

2 Schlimmer & Fishers ID4

ID4, [18] is the first substantial step away from batch algorithms, but it is not guar-
anteed to learn all the concepts that it’s non-incremental brother, ID3, can learn.3 To
handle incremental updates, all quantities needed to compute the information gain
for any attribute node is kept at that node. This information consists of class counts
for each value associated with each test attribute as it is encountered in the tree
traversal. If any leaf is encountered at which both postive and negative examples are
currently classified, then it must be transformed into a test node. To select the most
informative attribute from the set of all unused attributes, the stored attribute-value
counts are leveraged to calculate information gain in the traditional fashion. There
is also a χ2 test to mitigate overfitting–to prevent replacement of a leaf node by a
decision node if there isn’t an advantage in doing so. Recursion terminates when all
instances at a node are of the same class (a leaf node), a new attribute cannot be
reliably chosen (fails χ2), or when all attributes are used and maximally informative.

If a test attribute is not the most informative, then it must be replaced by the
maximal attribute from a node below it. But what about the subtree below the

3ID3’ is the bruteforce algorithm: rebuild the tree with ID3 after every new instance
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node in question?. Unfortunately, this part of the algorithm (step 3d) is bit poorly
conceived for a few reasons. Firstly, it discards the positive/negative counts along
with the whole subtree, and requires a “remedial” period to rebuild the tree and
the counts. Although Schlimmer and Fisher argue this occurs infrequently, and the
important nodes higher in the tree are more likely to be stable, this renders some
concepts that ID3 could learn unlearnable by ID4. Thrashing: whenever the relative
ordering of the maximal attributes along a path in the tree changes often during
training, that is, at least once during a given “remedial” period, it is possible the
algorithm will not converge to any ordering. If the relative ordering does not stabilize
with training, then subtrees will be discarded repeatedly, rendering certain concepts
unlearnable by the algorithm. Thrashing usually occurs deeper in the decision tree–
three or more levels below the current node and in which there is no stable best test
attribute for the node.

The number of examples needed to make ID4’s tree stable is the sum of all in-
stances required to stably learn all subtree nodes, while the number of instances to
learn a stable ID3 tree is simply the maximum number of instances to stably learn
any node in the tree. It should be noted that the computational cost per instance is
much lower for ID4 than ID3, but as stated more instances were required.
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3 ID5R

Despite being a rather poorly written paper, it does present the first successful at-
tempt of extending traditional batch algorithms into online learners [20] because it
restructures rather than discards inaccurate subtrees. It is guaranteed to build the
same decision tree as ID3 for any given set of training instances, again, by maintain-
ing counts to compute the information gain for any attribute at a node, making it
possible to update the test attribute at a node when it becomes outdated.

Instead of discarding the subtrees below the old test attribute, ID5R restructures
the tree so that the desired test attribute is at the root. The restructuring process,
called a pull-up, is a tree manipulation that preserves consistency with the observed
training instances, and that brings the indicated attribute to the root node of the
tree or subtree. The advantage of restructuring the tree is that it lets one recalculate
the various positive and negative counts during the tree manipulations, without reex-
amining the training instances. During pull-up, one recursively checks the accuracy
of the the subtrees, restructuring them as necessary so that every test attribute at a
node has the highest information gain. Unfortunately the paper offered little more
detail than this (see ITI).

The ID5R algorithm builds the same tree as the basic ID3 tree construction algo-
rithm, given the same instances and given the same method for breaking ties among
equally good attributes. Note the instances at a node are described only by the
attribute-value pairs that have not been determined by tests above the node. This
means that the instance descriptions are reduced by one attribute-value pair for each
attribute tested above in the tree.

3.1 Performance Metrics

The first metric the authors compute is the total number of attribute comparisons
while building the tree. This measures the cost of maintaining the positive and neg-
ative instance counts in terms of the number of additions performed. Each addition
needed to compute such a count is called an instance-count addition, includes the
cost of adding counts during the tree transposition process. The second metric is the
cost of attribute selection in terms of the number of E-score (or information gain)
computations. This activity is not very costly for the basic ID3 tree construction al-
gorithm, but should be considered for the ID5R and ID4 algorithms, which compute
the E-score for every non- test attribute at every decision node in the tree.
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The worst case complexities table shows the number of information gain (E-score)
calculations and the cost of maintaining the positive and negative instance counts in
terms of the number of additions performed. n is the number of instances, d is the
number of attributes, b is the maximum number of values for any given attribute.

4 ID5R version 2: ITI

Curiously, another paper by Utgoff [21] does a much better job at explaining tree
transpositions for ID5R, but it was published 8 years after ID5R with almost no
change to the algorithm, other than renaming “transpositions” as “mappings” from
an existing tree and a new training example to a new tree.

Adding a new example: If the example has the same class as the leaf, the example
is simply added to the set of examples saved at the leaf node. If the example has
a different class label from the leaf, the algorithm attempts to turn the leaf into
a decision node, picking the best test according to the test-selection metric. The
examples saved at the node that was just converted from a leaf node to a decision
node are then incorporated recursively by sending each one down its proper branch
according to the new test.

During the recursive transposition, it may be that the subtrees have been trans-
posed as a by-product of bringing the desired test to the root. At each decision node
that requires a different test be installed, the algorithm transposes the tree to install
the best test at the node. It could become costly to check every decision node of the
subtrees after a transposition. Often, a subtree is not touched during a transposition.
To this end, a marker is maintained in each decision node that indicates whether the
choice of the installed test is stale. At the root, identify the desired test and install
it via recursive transposition; for each subtree, if it is marked stale, then recursively
identify its desired test and install it.

While ID5R does exhibit a lower average incremental update cost of updating over
building a new decision tree from scratch, it is not necessarily true that the sum of the
incremental costs are lower because we care only about the cost of being brought up
to date at a particular point in time. The update cost is independent of the number
of training examples on which the tree is based, and the resulting tree is independent
of the order in which examples are received. The glaring flaw of this algorithm is that
for large data sets, saving the examples at the node will not be possible. The rest
of the paper explains other luxury features like error correcting modifications, noise
tolerance, missing class labels,
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5 Very Fast Decision Tree (VFDT)

VFDT[8] learns decision tree incrementally from streaming data using constant time
and memory per example. The revolutionary construct used is a Hoeffding tree, which
is learned in constant time per example (worst case proportional to the number of
attributes) while exhibiting nearly the same structure as a batch learner, given enough
examples. Only the tree and necessary statistics are stored in memory, and examples
can be processed faster than they can be read from disk. Since the algorithm is
designed to handle possibly infinite examples, the authors note it may be sufficient to
consider only a small subset of examples that pass through a node, and thus sample-
based decision tree constructions were born. The first examples to arrive in the data
stream are used to choose the split attribute at the root; subsequent ones are passed
through the induced portion of the tree until they reach a leaf, are used to choose
a split attribute there, and so on. To determine the number of examples needed for
each decision, VFDT uses a statistical result known as Hoeffding bounds or additive
Chernoff bounds: after n independent observations of a real valued random variable r
with range R, the Hoeffding bound ensure that, with confidence 1− δ, the true mean
of r is at least r − ε, where r is the sample mean and

ε =

√
R2ln1/delta

2n

The elegance of this equation is that it is independent of the underlying distribu-
tion of the stream, at the cost of being a bit more conservative.

Furthermore, with high probability, the attribute chosen with n examples is the
same as that chosen after seeing infinite examples. If IG∗(x) is true information gain
of example x, and IG(x) is the sample mean information gain, then IG(x1) > IG(x2)
with probability 1−δ given n examples have been seen at this node and ∆IG = IG(x1)
- IG(x2) > ε. Thus with 1 − δ probability, x1 is the correct attribute on which to
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split the tree. Note, it is not valid to split a node until enough examples have been
such that ε is less than ∆IG.

The algorithm contains a mechanism for pruning, attribute-value counts at each
node for statistical computations. The authors prove that the quality of the tree
asymptotically approaches that exhibited by a batch learner by defining a loss func-
tion. Empirical data shows that batch algorithms perform better in their own domain:
their accuracy is higher when n is small, but after a few dozen thousand examples,
VFDT far outperforms its batch counterparts. They also prove that if d is the max-
imum number of attributes, v is the maximum number of values for any attribute,
and c is the number of classes, then VFDT requires O(dvc) memory per leaf, which
is independent of the number of attributes seenIn fact, an exponential decrease in δ
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can be obtained by a linear increase in n.
Some other features of the algorithm are: 1) since IG computation is the most

expensive step, only recompute it after a certain number of new features have been
seen; 2) the least promising subtrees can be deactivated to free up memory (with
periodic checks for potential reactivation by scanning all nodes); 3) interestingly, the
Hoeffding tree can be “seeded” by a small tree generated by a batch algorithm to
shorten the learning curve; and 4) if data is arriving rather slowly, old examples can
be re-scanned to improve accuracy.

However, the authors assume that all concepts are stationary. A year later in 2001,
however, their algorithm was updated to incorporate concept drift, hence Concept-
adapting Very Fast Decision Tree Learner.

6 CVFDT

The primary flaw in VFDT was the assumption of concept stationarity over time.
It is more accurate to assume that data was generated by a series of concepts, or
by a concept function with time-varying parameters, thus have a sliding window of
training examples to build, modify, and keep up to date its Hoeffding tree. The
Concept-adapting Very Fast Decision Tree (CVFDT) algorithm has the same speed,
accuracy and precision as VFDT, but learns the model by reapplying VFDT to a
moving window of examples every time a new example arrives–with O(1) complexity
per example, as opposed to O(w) where w is the window size. The window must be
sufficiently smaller than the rate of concept drift but large enough to fully learn the
current concept. The computational cost of reapplying a learner may be prohibitive
if the rate of the example stream or the concept drift is too high, even though each
example is still processed in constant time.

The update step for a single example is similar to that of VFDT: “increment the
counts corresponding to the new example, but decrement the counts corresponding
to the oldest example in the window (which now needs to be forgotten”4). This will
statistically have no effect if the underlying concept is stationary. If the concept
is changing, however, some splits that previously passed the Hoeffding test will no
longer do so, because an alternative attribute now has higher gain (or the two are too
close to tell). In this case CVFDT begins to sprout a hiddent, alternative subtree’
to replace the obsolete one [7]. CVFDT periodically scans the internal nodes looking
for ones where the chosen split attribute would no longer be selected (note that the
relevant statistics are stored at every node as well as a finite list of possible alternate
split attributes). In this “testing” phase, the next m examples are used to compare
the still-hidden alternate attributes against the current one; and separately, those

4“Forgetting an old example is slightly complicated by the fact that the tree may have grown
or changed since the example was initially incorporated. Therefore, nodes are assigned a unique,
monotonically increasing ID as they are created. When an example is added to window W, the
maximum ID of the leaves it reaches in a branch and all alternate trees is recorded with it. An
example’s effects are forgotten by decrementing the counts in the sufficient statistics of every node
the example reaches whose ID is less than that stored”
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subtrees whose accuracy has not been improving are pruned. When it finds the
current split attribute to be less accurate than an alternate, “CVFDT knows that
it either initially made a mistake splitting on that attribute (which should hap- pen
less than δ % of the time), or that something about the process generating examples
has changed”. And thus the hidden subtree replaces the old one with no “remedial”
period needed to thicken it. Choosing a new split attribute is similar to choosing
an initial split attribute for a leaf, but with tighter criteria to avoid excessive tree
growth.
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The window size parameter, w, does not fit all concepts, so it needs to be dynamic.
“For example, it may make sense to shrink w when many of the nodes in HT become
questionable at once, or in response to a rapid change in data rate, as these events
could indicate a sudden concept change. Similarly, some applications may benefit
from an increase in w when there are few questionable nodes because this may indicate
that the concept is stable – a good time to learn a more detailed model. CVFDT is
able to dynamically adjust the size of its window in response to user-supplied events,
which are caught by hook functions.

Again, many of the advantages of VFDT apply to CVFDT, such as a memory
requirement independent of the number of examples seen. Some criticisms of CVFDT
include: the discarding subtrees that are out of date rather than persisting them
for some time in case they need to be “reactivated” as the FLORA algorithm does.
Some of these subtrees might be useful in the future because there might be repeating
patterns in the data. Also, the dynamic window size may not be flexible enough to
match the accuracy obtained if the concept-drift window sizes were known ahead of
time, and some argue there was not enough testing to this end. CVFDT is unable to
handle data with an uncertain attribute, something UCVFDT addresses [12]
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7 Online Adaptive Decision Tree, OADT

OADT a classification algorithm that maintains the structure of a tree and employs
the gradient descent learning algorithm like neural networks for supervised learning
in the online mode [8]. Inputs to a node include an activation from its parent as well
as the example (the root only receives the example). Unlike conventional feedforward
neural networks, the intermediate nodes are not “hidden” in that they can see the raw
input example as it traverses down the tree. Activations functions are sigmoidal, and
they are mutliplied when propogated: node i delivers to its children the product its
own activation value and that of its parent, thus the activation at a leaf is the product
of the activations produced by the intermediate nodes along the path to it. If an leaf
node’s class ‘is ‘negative”, then the activation is multiplied by −1, and unchanged if
it’s “positive”. As for the tree structure, OADT is a complete binary tree of depth l
where l is specified beforehand. It has a set of intermediate nodes D, whose size is
2l 1 and a set of leaf nodes L where L = 2l, such that the total number of nodes in
the tree is 2l + 1. Each intermediate node i in the tree stores a decision hyperplane
as a normalized n-dimensional weight vector for n-dimensional input examples, and
it stores the sigmoidal activation function.

The decision region is always explicitly formed by the collective activation of a
set of leaf nodes. The updating procedure is rather complicated for discussion here,
but involves a modified gradient descent algorithm. There is a surprising resilience
to overfitting, as the complexity of the decision region saturates after a certain depth
of the tree (specified at runtime). OADT is more robust to concept drift and infers
the same decision tree as the nonincremental ID3 algorithm

8 Numerical Interval Pruning (NIP) for VFDT

The authors [9] present an improvement to the VFDT algorithm that reduces runtime
by 39%, and reduces by 37% the number of samples needed to build the same model
by more aggressive sampling. These improvements were not applied to CVFDT,
however, they could and should be easily extended.

They replace the Hoeffding bounds for sampling with the multivariate delta method,
which is proven to not increase the number of samples needed. Essentially the authors
notice that the difference of the expected gains of a function of two attributes x and
y is a normal random variable. Then they simply find the appropriate bounds using
a normal test (why they didn’t use a chi-squared is an open question). With no more
observed examples than Hoeffding bounds require, they can say the expected gain of
attribute x is greater than that of y with some probability δ. In practice, the mul-
tivariate delta method drastically improves runtime without sacrificing performance.
See the cited paper for details.

13



9 Uncertainty-handling and Concept-adapting Very

Fast Decision Tree, UCVFDT

A more reknowned paper [16] introduces the topic of uncertainty applied to deci-
sion trees as a whole. And although poorly written, the paper [12] introducing the
UCVFDT is worth mentioning because it proposes a solution to this problem specifi-
cally for the X-VFDT lineage of algorithms. Uncertainty is defined as fuzzy, imprecise,
or unknown attribute values in examples; values with ranges like 5-10 for a quantity
that should be an exact number such as 7.85 are an example. They simply define
and defend a metric known as Uncertain Information Gain incorporated into the
algorithm in place of other split tests.

10 Ensemble Classifiers

Ensemble classifiers incorporate many ODT sub-algorithms with different weights to
collectively classify streaming data. Instead of continuously revising a single model,
they train and pool a multitdude of classifiers from sequential data chunks in the
stream before a decision is made. Combining classifiers can be done via averaging,
or more commonly, weighted averaging 5. Ensemble classifiers can outperform single
classifiers in mid-to-low concept-drift environments.

Google’s PLANET [15] (Parallel Learner for Assembling Numerous Ensemble
Trees) implements each of these sub-algorithms in a map-reduce model to handle
truly massive datasets. While a good read, the paper focuses narrowly on utilizing
the the properties of its distributed computation model.

11 Conclusions

For development and testing of any new online decision tree learning algorithms,
ID5R should be the benchmark because of its simplicity and satisfactory performance.
By Occam’s razor, any algorithm more complicated than ID5R that does not have
significantly better performance or runtime should not be used. Overall, the author
belives that the CVFDT algorithm [8] is most worthy of implementing because of
it’s innovative mathematical approach (Hoeffding bounds), modular subroutines that
are easily interchanged and updated, and novel structural features like node ID’s and
hidden alternate subtrees.6 Moreover, the research community has heavily revised and
optimized VFDT subroutines, like replacing Hoeffding bounds with the multivariate
delta method [9] and adding uncertainty handling to information gain calculation [16]
[12]. There were some other moderately useful modifications to VFDT not discussed
here, such as that proposed by Gama [5].

5where the weight is inversely proportional to the expected error
6CVFDT seemed to capstone the field of serial online algorithms, however, there was some

criticism by Cal and Wozniak in 2013 [3]
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Then the advent of parallel computing introduced a flurry of parallelized online
decision tree learning algorithms, leading to ScalParC [11], SPDT [2] [3] and Google’s
PLANET [15], each of which exploit in one way or another a parallel architecture
like map-reduce. These algorithms are not discussed here because they lean more
towards systems, architecture, and data mining, but they are certainly worth inves-
tigating because of the attractive performance distributing computation. In fact the
future of online algorithms probably rests, at least in practice, in parallel computing.
For example, SPDT [2] is empirically shown to be as accurate as a standard deci-
sion tree classifier, while being scalable for processing of streaming data on multiple
processors. SPIES is more of a mining algorithm for parallel disk-resident datasets,
but it combines RainForest [6] paradigm with Hoeffding sampling. Most of the mod-
ern literature on decision trees exploits a specific parallel computation paradigm or
platform, but retain key elements of the aforementioned algorithms, such as storing
attribute-value counts. If one actually wants an algorithm to be marketable, it should
probably be distributed or at least scalable in some way.
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