
A Comparison of Stochastic Methods for PCA as Applied to Streaming
Facial Recognition

Corbin Rosset
Johns Hopkins University

3400 N. Charles St.
Baltimore, MD 21218, USA
crosset2@jhu.edu

Edmund Duhaime
Johns Hopkins University

3400 N. Charles St.
Baltimore, MD 21218, USA
eduhaim1@jhu.edu

Abstract

This study applies a variety of stochas-
tic and incremental techniques for principle
component analysis (PCA) to quickly learn
maximally informative linear subspaces on
a streaming version of the Yale Face Data
Set B[11]. We compare the performance
of a K-nearest neighbor classifier on the
best subspaces learned by each of: Stochas-
tic Power Method (SPM), Incremental PCA
(IPCA), Matrix Stochastic Descent (MSG),
and Sparse PCA (SPCA). We compare and
contrast the theoretical properties such as cor-
rectness, space, and iteration complexity. In
all cases, the memory required to store a sub-
space capable of achieving accuracy similar to
that of the baseline classifier was 2-4% of the
size of the input data. These algorithms play
an important role in improving the scalabil-
ity of facial recognition in a streaming setting.
Our results match those of Turk and Pentland
[12].

1 Introduction

The premise of subspace learning is to map a data
matrix X ∈ Rd×n of n examples each of dimen-
sion d to a k dimensional subspace, k << d that
preserves maximal “information”. The motivation
is that most data sets capture redundant, verbose, or
noisy features that mask the underlying structure of
the data. It is often the case that natural processes are
largely controlled by finitely many simpler mech-
anisms that operate in lower dimensions. For ex-
ample, latent variables captured by images such as

shadows, reflections, perspective can drastically al-
ter pixel values even though such phenomenon are
easily parameterized. PCA seeks to find low di-
mensional linear representations of these latent vari-
ables such that, when transformed back into the orig-
inal space, the loss of information is minimal [9].
In the next section, we will pose PCA as an opti-
mization problem with multiple equivalent interpre-
tations, and then derive its empirical solution. We
will then describe and derive solututions to the state
of the art stochastic and incremental approximation
algorithms to the PCA objective. We applied each
of the algorithms on the Yale Face Data Set B in
a streaming fashion and trained a K-NN neighbor
classifier on the respective learned subspaces.

2 PCA and its Stochastic Variants

Given n data points each in Rd, find an orthogonal
projection matrix U ∈ Rd×k such that the projection
x̂ ∈ Rk of a data vector x ∈ Rd given by x̂ = UU>x
minimizes the empirical reconstruction error:

Error =
1

n

n∑
i=1

‖xi − UU>xi‖22

=
1

n

n∑
i=1

(
‖x‖22 − ‖U>xi‖22

) (1)

In Equation 1, the term 1
n

∑n
i=1 ‖xi‖22 is constant

given any data set x. So in order to minimize the re-
construction, or projection, error we must maximize
1
n

∑n
i=1 ‖U>xi‖22. This is equivalent to maximiz-

ing the trace of U>
[

1

n

n∑
i=1

xix
>
i

]
U where Cxx =

1
n

∑n
i=1 xix

>
i is the empirical covariance matrix [9].

Since the i’th diagonal entry of Cxx is the vari-
ance1 of xi, var(xi) = E[x>i xi] the trace of Cxx
is the variance of the whole data matrix. Hence it
is natural to interpret E[‖U>xi‖22] = E[U>xix

>
i U]

as the variance of xi captured by U . Thus, PCA
serves to minimize reconstruction error, or maxi-
mize the variance of the data captured by the sub-
space U . Derived in the appendix, it turns out that U
is comprised of the top-k eigenvectors of Cxx sorted
in decreasing order of eigenvalue: U = V:,1:k for
Cxx = V SV > [9].

This solution holds for any distribution D of the
data as long as each of the n samples are drawn i.i.d
from it [9]. For a correct empirical covariance ma-
trix, a simpleO(d2mk) time algorithm known as the
power iteration method calculates U ∈ Rd×k using
O(m) iterations per component2.

The most pressing challenge is the temporal3 and
spatial dependence of these solutions on powers of
d, which can easily be intractable for d ≥ 105,
which is common for images. Secondly, a batch
algorithm may not satisfy modern computational
desires, for many modern applications require re-
sponses to realtime streaming data arriving at high
frequency. In such streaming models, it is also de-
sired that the algorithm adapt to and track the opti-
mal subspace.

Subspace learning (linear or nonlinear) is ubiq-
uitous in data-driven applications such as compres-
sion, de-noising, visualization and matrix comple-
tion.

2.1 Stochastic Power Method

The optimization problem describing PCA,

max
U∈Rd×k

ED
[
trace

(
U>xx>U

)]
subject to U>U = I

(2)

is in fact nonconvex due to the constraint and the
objective function being a maximization. A convex

1It is assumed X is centered E[xi] = 0, eliminating the
(E[xi])

2 term in the variance.
2the iteration complexity depends on the eigengap between

consecutive components; a larger difference in eigenvalues im-
plies faster convergence

3the fastest known algorithm for brute force eigendecompo-
sition of Cxx is O(d3 + d2log2d)

relaxation is given by the constraint that U>U � I
meaning all eigenvalues of Cxx are at most one, and
optimally equally to one. Assuming D is unknown
but unchanging, the goal is to update U directly as
samples xi arrive sequentially and independently.
Since we have access to neither D nor the popula-
tion of samples ahead of time, the true Cxx cannot
be computed (and assume n is too large for its em-
pirical estimate to be stored in memory). However,
the i.i.d assumption admits E[xtx

>
t] = Cxx.

In this setting, gradient descent is a viable algo-
rithm, with updates of the form

U (t+1) = Porth
(
U (t) + ηtxtx

>
t U

(t)
)

(3)

The projection of the updated U onto the set of
orthonormal matrices, Porth can be accomplished
in O(k2d) time using Gram-Schmidt or QR factor-
ization. Notice that instead of O(d2) memory, the
updates require only O(kd). The time complex-
ity is O(Tkd) for T iterations. While this algo-
rithm converges with probability 1, the rate of con-
vergence is unknown. Obviously, if the true co-
variance Cxx were known, then the objective func-
tion would become trace

(
U>CxxU

)
with derivative

2CxxU , which would replace the gradient term in
the update above [2].

2.2 Incremental PCA

Derived from incremental singular value decompo-
sition [4], a rank-k approximation to the empirical
covariance matrix can be updated incrementally:

C(t+1)
xx = Πk

(
C(t)
xx + xtx

>
t

)
(4)

where Πk is the projection onto the set of rank-k
matrices with respect to the spectral norm [2]. To
avoid explicit computation the d × d matrix xtx>t ,
we assume by the inductive hypothesis4 that a rank-`
approximation to C(t)

xx = USU> is given, and make
rank one updates to Equation 4 of the form:

[
U x⊥

||x⊥||

] [S + x̂x̂> ||x⊥||2x̂
||x⊥||2x̂> ||x⊥||22

] [
U
x⊥
||x⊥||

]
(5)

4Initialize the algorithm with U and S equal to all zeros.

for x̂ = U>xt the coefficients of the projec-
tion of xt onto the column space of U , and x⊥ =
xt − UU>xt its orthogonal component. The 2nd
matrix in Equation 5, denoted Q, is symmetric of
size ` + 1 × ` + 1, and therefore Q itself can be
eigendecomposed Q = U ′S′U ′> in O(k3) time5

with positive eigenvalues that happen to be those S
plus one more from the rank-one update. Finally,
set U =

[
U x⊥

||x⊥||

]
U ′ and S = S′ and truncated

each to retain the top-k eigenvectors and eigenvalues
sorted in decreasing spectral energy [2].

The memory required is O(kd) and runtime is
O(Tk2d) dominated by the update to U each of the
T iterations. There are also no parameters to tune
here. In practice, this algorithm is most expeditious
to converge, but there are data distributions that arise
naturally or adversarially that cause the algorithm to
converge to an incorrect subspace with high prob-
ability [2]. Some proposed remedies have been to
store rank-k′ matrices, k′ > k or use mini-batch up-
dates to lower the probability of failure.

2.3 Matrix Stochastic Gradient
The loss function in Equation 1 can be rewritten as
follows:

min
P∈Rd×d

E§∼D
[
x>(I − P)x

]
subject to rank(P) ≤ k, 0 � P � I

(6)

for P = UU> an orthogonal projection matrix.
Again, a convex relaxation replaces the constraints
with: trace(P) = k, 0 � P � I . The iterate updates
are:

P (t+1) = Πtrace(P)=k,0�P�I

(
P (t) + ηtxtx

>
t

)
(7)

which again is rewritten in the form of incremen-
tal SVD to preserve only a rank-k approximation of
the true projection matrix, and to avoid the d×d cal-
culation [3]. Assume an approximation of the eigen-
decomposition is given as P t) = USU> for P ∈
Rd×k, then for a new example xt, P (t+1) + xtx

>
t

has the same update as Equation 5 for the same def-
inition of x⊥ and x̂.

5it will be enforced that ` = k

However, unlike IPCA, the projection step here
Πtrace(P)=k,0�P�I , is necessary; it can be computed
as follows: Sii ← max(0,min(1, S′ii + µ)) for
µ ∈ R such that

∑
i Sii = k is a shifting of all

eigenvalues by a constant so that their sum is k.
This is merely a rescaling of the learned subspace,
and as before, U ←

[
U x⊥

||x⊥||

]
U ′, but only those

columns corresponding to nonzero Sii [3].
The following theorem due to [3] bounds the er-

ror: After T observations of i.i.d samples, the vari-
ance captured by the approximate P is within ε =

2
√

k
T of the true variance for η =

√
k
T . That is,

E[x>Px− x>P ∗x] ≤
√
k

T
(8)

for P ∗ the optimal solution to Equation 6 and as-
suming that initially P (0) = 0.

2.4 Sparse PCA

Although not the focus of this study, sparsity in prin-
ciple components is highly desirable to improve in-
terpretibility of the learned subspace and statistical
consistency in high dimensions. We felt the appli-
cation of facial recognition merited a comparison of
sparse PCA to the other algorithms addressed here.
Even though each column of U is unit norm, there
is often a large fraction of the input variables very
near to zero. In the experiments to follow, we make
this phenomenon explicit by comparing some of the
top principle components, for which a majority of
the elements closest to zero were set to zero to those
vectors found by sparse PCA.

Concretely, one goal would be to

max
U∈Rd×k

ED
[
trace

(
U>xx>U

)]
subject to ||ui||0 ≤ t, ||ui||2 ≤ 1

(9)

Since the `0 “norm” in fact violates homogeneity
of normed vector spaces, the closest convex relax-
ation of this constraint is ||ui||1 ≤ c for all columns
ui in U , which turns out to be good enough in practi-
cal situations [13]. An equivalent formulation adds a
regularization term, Pλ(ũ) to the reconstruction ob-
jective itself:

{u∗, v∗} = argmin
ũ∈Rd,ṽ∈Rn

||x− ũṽ>||2F + Pλ(ũ)

subject to ||ṽ|| = 1
(10)

where one definition of Pλ(ũ) =
∑d

i=1 pλ(|ũi|)
for pλ(x) = λ(x) yields an `1 regularization term
with coefficient λ. In Equation 10 above, for X =
USV > =

∑r
i=1 σiuiv

>
i define ũ = σ1u1 and ṽ =

v, so that x − ũṽ> is the best rank-1 approximation
to x with respect to the frobenius norm6.

A simple iterative algorithm by Zou and
Hastie[13] exists for solving Equation 10 which al-
ternates holding one variable constant and solving
for the other until convergence.

3 K-NN for High-Dimensional Data

Although we used K-NN as a black box algorithm,
it is a fascinating discussion as to why it was able
to achieve such good performance on data with very
high dimensionality7. There are obvious two prob-
lems K-NN faces: computing distances, and quering
nearest neighbors (used for kd-tree implementation
of K-NN). It is well known that preserving distances
exactly in high dimensional proximity problems ne-
cessitates exponential time or space complexity, and
that randomized approximations are needed to re-
duce complexity to polynomial [8]. Worse, while
the exact nearest neighbor query time would is
O(dO(1)logn), it requires O(nd) space [5] in the K-
NN algorithm; hence, a relaxation is required here
as well.

Headway against these bounds has been achieved
by relaxing exactness constraints to approximations
- instead of returning exact distances or exact neigh-
bors, return distances with distortion at most 1 + ε
and any neighbor within 1 + ε the distance to the
true nearest neighbor. Results by Indyk et al show
that the lower bound on the embedding dimension
for an n point `2 metric with a 1 + ε distortion is
logn

ε2log1/ε
. Surprisingly, all of these embeddings in-

volve random matrices, even with independent uni-

6As usual, the next k−1 best rank-1 approximations to x are
found via deflation, e.g. ũ2, ṽ2 is the best rank-1 approximation
to x− ũ1ṽ1

>

7the baseline classifier achieved the best accuracy on the raw
images, each with d = 32, 000 pixels

form random entries from {+1,−1} [1]. Such em-
beddings can be computed deterministically in time
O(n2d(logn+1/ε)O(1)) [6]. The (c, r) approximate
nearest neighbor problem is stated: given a set S of
n points in a metric space X with distance metricD,
design a data structure that supports a query opera-
tion for q ∈ X which returns p′ ∈ S, D(q, p′) ≤ cr,
iff ∃p ∈ S such that D(q, p) ≤ r. There are many
rich solutions to this problem that give query time of
O(d log n/ε2) with linear space O(dn) [10]

4 Experiments

The data used for the experiments was the Extended
Yale Face Dataset B (B+) 8. This dataset includes
images of 38 people whose faces were illuminated
by a light source at various angles. Each image is
of size 168x192 pixels and in grayscaled. The total
dataset is approximately 2400 images with 64 im-
ages for each person.

Some images were deemed to be of too poor qual-
ity to contain any significant semantic content. The
images removed were labelled ***E, and the first
parameter was greater than 90. This reduced the
dataset to about 1850 images.

The reduced dataset was then randomly split into
60% train data, 20% test data, and 20% dev data.
The data was then centered and normalized (zero
mean and unit variance). For each of the previously
described algorithms a hand-chosen upper bound
of 80 principle components were learned from the
training data. There were two baseline computations
of the exact singular value decomposition: one be-
ing the built-in Matlab PCA algorithm, and another
one being direct SVD using the trick shown in foot-
note 10. At no point could any d×dmatrix be stored
in main memory. The authors implemented by hand
SPM, IPCA, SVD PCA, MSG. For MSG we con-
sulted the author of [3] for computation of the pro-
jection. We give credit to those who implemented
sparse PCA in the acknowledgements section.

A K-NN classifier was trained on the first k prin-
ciple components, for k = 1...80. The built-in Mat-
lab K-NN classifier was used for this9. A grid search

8http://vision.ucsd.edu/content/extended-yale-face-
database-b-b

9As the software is proprietary, we are not aware exactly
how it is implemented, but it must employ some of the tech-
niques discussed above for handling large dimensional data.

Algorithm Accuracy Time
Matlab PCA 75% 1:00
SPM 63% 4:30
IPCA 75% 2:00
MSG 71% 17:20
SVD PCA 75% 1:25
SPCA 73% 6:51
Direct KNN 83% -

Table 1: Average accuracy achieved by each algo-
rithm and time to convergence (min:sec)

for the best parameters (k, the number of nearest
neighbors to average over, the number of pixels to
keep for sparse PCA) was performed. The classifier
was then fed the data projected onto the top k com-
ponents of the subspace corresponding to the best
choice of parameters. As a baseline, the K-NN clas-
sifier was also run directly on the raw dataset. The
parameter for sparse PCA was the regularization pa-
rameter, which upon tuning yielded about 10,000
pixels out of a possible 32,000 per principle com-
ponent.

In addition to accuracy of the classifiers, a sam-
ple of images were reconstructed using the princi-
ple components to visualize the fidelity of the sub-
space. Furthermore, the top “Eigenfaces” (a few of
the top principle components shown as images) are
also shown. Note that the eigenfaces do not corre-
spond to any one person, but are learned from the
data set in its entirety. We were also interested in
what facial features (e.g. eyes, nose, chin) were em-
phasized in the top eigenfaces. To facilitate this,
in a given eigenface learned from each method, we
threshold those pixels below the top standard devi-
ation of intensity to zero. We also compare these
thresholded eigenfaces to those eigenfaces learned
by sparse PCA.

We also plot the variance captured by each algo-
rithm as a function of the top-k principle compo-
nents.

5 Results

Figure 1 shows the classification accuracy of each
method implemented against the number of princi-
ple components used. Table 1 shows the best classi-
fication accuracy of each method as well as the over-

all time it took to train and test K-NN. As expected,
the accuracy increases monotonically with the num-
ber of principle components, but diminishingly so.

We confirm the result of the landmark paper by
Turk and Pentland that 40 principle components
is sufficient to learn a high fidelity subspace [12].
However, we did not extend these algorithms to the
pattern recognition task of identifying faces in more
complex image, nor did we weight the eigenfaces
such that each real face could be constructed from
a linear combination thereof. We theorize that real-
time recognition and detection systems could bene-
fit from the methods discussed in this study because
globalization has made international travel more ac-
cessible, making the streaming model of computa-
tion more relevant.

The Matlab built-in PCA, SVD PCA10, and Incre-
mental PCA achieved the best accuracy overall with
75% accuracy with the fastest convergence. Sparse
PCA does reasonable well with 73% accuracy, com-
pared to the other methods. Matrix stochastic gradi-
ent is by far the slowest to converge because of the
complicated projection step, but again enjoys bet-
ter theoretical guarantees. Stochastic power method
is much more sensitive to its learning rate, and per-
forming a more fine tuned grid search over η was
outside our time constraints. However, all of these
algorithms should learn the same subspace to within
small rotations and scalings.

One limitation to this dataset is its small sample
size (only ≈ 2000 images in total) and even smaller
label set (only 38 individuals). These algorithms are
intended to be applied to orders of magnitude larger
datasets.

Figure 2 shows the original face used in the re-
construction experiments. Figure 5 shows the ex-
amples of that face reconstructed using only the top
five principle components for the corresponding al-
gorithm. Figure 6 shows the original face recon-
structed faces with 30 principle components. The
exact computation algorithms (built-in PCA, SVD
PCA), and surprisingly, IPCA as well generate the
most detailed reconstructions. Some features like
the eyes seem slighlty garbled for MSG and SPM,
and it possible that those algorithms were not fully

10This is simply direct computation of the subspace by ob-
serving that the covariance matrix XX> = US2U> for X =
USV >

(a) Matlab Built-in PCA (b) SVD PCA (c) Stochastic Power Method

(d) Incremental PCA (e) Matrix Stochastic Gradient (f) Sparse PCA

Figure 1: Percent Accuracy vs Number of Principle Components for each PCA method

converged. It is difficult for sparse PCA to recon-
struct faces since it is so harshly constrained to find,
in a nearly binary sense, only those pixels that are
most informative for identification.

Figure 3 shows an example of the “eigenfaces”
of the first principle components for each algorithm,
Figure 4 shows the thresholded “eigenfaces” of the
same principle components. To our surprise, the top
eigenfaces captured the effects of the lighting condi-
tions (rather than eyes, nose, or chin, it learned the
right or left half of faces). Eyebrows, pupils, lips,
and cheekbones were also points of focus.

From looking at both the reconstruction and
“eigenfaces” we see some explanation for the data.
Incremental PCA, SVD PCA, and the Matlab PCA
all learn similar “eigenfaces” and focus on simi-
lar anatomical details. It is unclear whether sparse
PCA, paradoxically, meets its goal of being most in-
terpretable.

Figure 7 shows the variance captured by the corre-
sponding number of principle components. For the
overall data, after centering and normalization, the
variance was approximately 3.55e7. These match
the accuracy result earlier, with SVD PCA and in-
cremental PCA capturing the most variance. Inter-

Figure 2: Original Face used for Reconstruction

estingly though, sparse PCA captures less variance
than the stochastic power method, but still manages
to outperform in terms of accuracy. Most users se-
lect k such that some threshold of the data variance
is captured by the subspace. For all the algorithms,
about 40 components were needed to capture 90%
of the variance in the data, resulting in a 98% reduc-
tion in the amount of memory needed to store the
data with high fidelity.

6 Conclusion

In this study we surveyed stochastic and incremen-
tal techniques for learning principle components

(a) Matlab (b) SPM (c) IPCA

(d) MSG (e) SVD PCA (f) SPCA

Figure 3: Examples of “Eigenfaces”

from large data matrices or possibly infinite streams.
While each of these approximations learns the same
subspace to within small rotations and scalings, the
iteration complexities vary dramatically (if they are
understood at all). Additionally, some algorithms
such as IPCA can be shown to fail under some order-
ings of inputs. While these algorithms cannot out-
perform exact computation of principle components,
they are alternatives that scale linearly with feature
dimensionality and can easily be adapted for stream-
ing settings. Interesting directions of future research
would be to understand how these algorithms deal
with missing data in feature vectors, as well as in-
vestigating scalable kernel methods for PCA.

7 Comparison to Proposal

1. We were not able to implement power iteration
PCA or online PCA due to constraints of the
representations being stored in main memory.
We did however implement stochastic power
method, incremental PCA, and matrix stochas-
tic gradient, as well as computing the true prin-
ciple components with singular value decom-
position. In addition, we looked at an imple-
mentation of sparse PCA to examine how it

would perform on the dataset.

2. We were not able to discuss bias-variance
trade-offs due to time constraints.

3. We did not include all of the learned hyper-
parameters (we omitted regularization coeff-
cients, for example). because they are specific
to the data set and too narrow for any meaning-
ful discussion.

8 Acknowledgements

We would like to thank Julio Trevisan and IRootLab
for their implementation of Zou and Hastie’s Sparse
Principle Component algorithm.

References

[1] D. Achlioptas. Database-friendly random pro-
jections. In Proc. 20th Annu ACM SIGACT-
SIGMOD-SIGART Symps. pages 274-281,
2001.

[2] Arora, R.; Cotter, A.; Livescu, K.; Srebro, N.,
”Stochastic optimization for PCA and PLS”
in Communication, Control, and Computing

(a) Matlab (b) SPM (c) IPCA

(d) MSG (e) SVD PCA (f) SPCA

Figure 4: Some examples of thresholded “Eigenfaces” chosen from among the top 5 principle components.
IPCA, built-in PCA, and SVD PCA focus most cleanly on anatomical features (even capturing beauty marks
above the lips!), they also achieve the highest accuracy

(Allerton), 2012 50th Annual Allerton Confer-
ence on , vol., no., pp.861-868, 1-5 Oct. 2012

[3] Arora, R., Cotter, A., and Srebro, N., “Stochas-
tic optimization for PCA with Capped MSG”,
in Archive, 2013, arXiv:1307.1674

[4] Brand, Matthew. Incremental Singular Value
Decomposition of Uncertain Data with Miss-
ing Values In ECCV ’02: Proceedings of the
7th European Conference on Computer Vision-
Part I (2002), pp. 707-720

[5] Clarkson, Kenneth L. ”A randomized algo-
rithm for closest-point queries.” SIAM Journal
on Computing 17.4 (1988): 830-847.

[6] Engebretsen, L.; Indyk, P.; and O’Donnell, R.
Derandomized dimensionality reductions with
applications. In Proc. 13th Annu ACM-SIAM
Sympos. Discrete Algor, 2002.

[7] P. Indyk. and R. Motwani. Approximate near-
est neigbors: Towards removing the curse of
dimsionality. In proc. 30th Annu. ACM Sym-
pos. 2000.

[8] Johnson, W. B. and Lindenstrauss, J. Ex-

tensions of Lipschitz mappingsinto a Hilbert
Space. Contemp. Math., 26:189-206, 1984.

[9] Jolliffe, Ian. Principal component analysis.
John Wiley & Sons, Ltd, 2002.

[10] Kushilevitz, Eyal, Rafail Ostrovsky, and Yu-
val Rabani. ”Efficient search for approximate
nearest neighbor in high dimensional spaces.”
SIAM Journal on Computing 30.2 (2000):
457-474.

[11] Lee, K. C; Ho, J. and Kriegman, D. ”Acquiring
Linear Subspaces for Face Recognition under
Variable Lighting ”, IEEE Trans. Pattern Anal.
Mach. Intelligence 2005, volume 27 pgs 684-
698.

[12] Turk, Matthew, and Alex Pentland. ”Eigen-
faces for recognition.” Journal of cognitive
neuroscience 3.1 (1991): 71-86.

[13] Zou, Hui, Trevor Hastie, and Robert Tibshi-
rani. ”Sparse principal component analysis.”
Journal of computational and graphical statis-
tics 15.2 (2006): 265-286.

(a) Matlab (b) SPM (c) IPCA

(d) MSG (e) SVD PCA (f) SPCA

Figure 5: Reconstructed face with 5 Principle Components

(a) Matlab (b) SPM (c) IPCA

(d) MSG (e) SVD PCA (f) SPCA

Figure 6: Reconstructed face with 30 Principle Components

(a) SVD PCA (b) Stochastic Power Method (c) Incremental PCA

(d) Matrix Stochastic Gradient (e) Sparse PCA

Figure 7: Variance Captured by Principle Components

