
Cooperative Multi-agent Reinforcement Learning for Flappy Bird*

Corbin Rosset†, Caroline Cevallos†, Ian Mukherjee†

Abstract— The advent of Google’s Deep Q-Learning Network
ushered in a new generation of reinforcement learning systems
that learn control policies directly from raw sensory data.
Two important innovations– using a deep convolutional neural
network to approximate the action-value function, and stateful
”experience-replay” mechanisms–allowed agents to tractably
learn successful strategies on Atari games, like Pong. Re-
searchers are working to generalize these techniques to handle
the complex challenges faced by human agents in the real
world. To this end, we are the first to investigate multi-agent
reinforcement learning to elicit cooperative play in the game
Flappy Bird. In our experiments, each agent is independent
and only observes the actions of the other player from the
raw environment pixels. We report that two agents are able to
achieve a score over 1000 after being trained on over 20,000
rounds of play.

I. INTRODUCTION

Reinforcement learning is a category of machine learning
that instructs an agent to act rationally in complex environ-
ments using only rewards/punishments to guide its action
in place of supervision. The environment is comprised of
possibly infinite states st ∈ S in each of which an agent
receives a reward rt = R(st) ∈ R and performs an action
at from a set of actions A in order to reach another next
state with hopefully higher reward. There is also a notion of
a transition model, which specifies how an action changes
one state to the next - this can be defined stochastically
(where actions can be determined as unreliable), or it can
be determined by physics1. The important assumption is that
the state transitions adhere to the markov property, that is,
the next state should only depend on the previous state and
the action.

Fig. 1. Feedback system

One solution to a reinforcement learning problem is to
learn a policy π(s) that specifies the best action to take

*Final Project for EN.600.661 Computer Vision at Johns Hopkins Uni-
versity. Instructor: Dr. Austin Reiter

†Johns Hopkins University Dept. of Computer Science
1If the transition model is fully known, then most reinforcement learning

tasks reduce to path planning through the state space

in any state (as the argmax of probability distribution over
the possible actions at that state). It is understood that the
best policy π∗(s) yields the highest utility in the next state.
The utility U(st) is the expected sum of discounted future
rewards over an infinite horizon of decision making; hence
utility is a metric of the long-term quality of a policy 2.
The utility of each state is its own reward plus the expected
reward of its successor states, so utilities of states are not
independent.

π∗(st) = argmax
a∈A(st)

∑
st+1

P (st+1|st, a)U(st+1) (1)

where

Uπ(st) = E
∞∑
t′=t

(γt
′−t ∗ rt′)3 (2)

The expectation is taken with respect to all possible
gameplay state sequences that can arise from the current
state-action pair. There are two problems to calculating π∗.
The first is that U takes a sum over infinitely many items.
This is addressed by the Bellman equation, which allows for
an iterative approach to finding the optimal policy:

U(st) = R(st) + γ max
a∈A(st)

∑
s′

P (s′|st, a)U(s′) (3)

It can be proven that the solution set of the Bellman
equations over all states is unique and equal to the utilities
defined in Equation 2. However, there are as many Bellman
Equations as there are states, and they are nonlinear because
of the ”max” operator4, so we must iterate the following
update until convergence in an algorithm known as Value
Iteration:

U(st+1) = E
[
rt + γmax

a′∈A
Ut(st)|st, at

]
(4)

Secondly, Equation 1, calls for knowledge of the transition
model p(st+1|st, at). If this is known, then this scenario is
known as a Markov Decision Process and algorithms such
as Value Iteration and Policy Iteration are guaranteed to
converge to optimal policies.

Without knowing either the transition model or the re-
ward function – ”model free” – agents can still infer the

2discounting refers to how much the agent prefers short term rewards to
long term ones, and is a hyper-parameter γ usually set to 0.99

3In practice, the summation terminates when the game terminates
4They become linear if the policy is fixed, but the policy is exactly what

we are trying to learn

best policy by trial and error. In most challenges relevant
to the real world, this is the only practical approach for
the following reasons: humans cannot consistently specify
rewards and transitions for all possible state-action pairs,
the state-action space might be too large to even compute
rewards or transitions for, and the exact outcome of actions
cannot be determined in complex environments. Yet, humans
can provide reliable feedback on a number of obvious events
such as scoring, winning, crashing, dying, etc.

A. Q-learning

There is a fundamental question at hand: to learn both
a model for the environment (its transitions) and utility
function as previously defined, or merely an action-utility
function with no model. The answer seems to be that for
less structured and more complex enviornments, learning
an action-value function is favored. Instrumental for the
latter approach is a strategy known as ”temporal difference”
learning. It disregards the transition probabilities altogether,
but instead uses the observed s, a, s′ transitions to adjust the
utilities of the observed states to match the utility estimates of
their observed successor states. With an appropriately de-
creasing learning rate α, the utility estimates converge toward
equilibrium values that agree with the Bellman constraints
from Equation 4:

Uπ(s)← Uπ(s) + α
(
R(s) + γUπ(s′)− Uπ(s)

)
(5)

Inside the factor with α as a coefficient, one can see how
Equation 4 is used as a target value to adjust U(s) for any
fixed policy π.

A Q-learning agent seeks a similar action-utility function
Q(s, a) which gives the expected utility of action a in state
s using one-step lookahead, where U(s) = maxaQ(s, a). A
Q-learning agent does not need a model of the environment
or transitions at any time, hence it is ”model free”. At
equilibrium, Equation 3 still holds if U(st) is replaced with
Q(st, at). But using the temporal difference approach in
Equation 5, the Q-learning update equation becomes:

Q(s, a)← Q(s, a) + α
(
R(s) + γQ(s′, a′)−Q(s, a)

)
(6)

which is calculated whenever an agent takes action a in
state s leading to s′. Conveniently, Equation 5 gives rise to a
natural loss function for the Q-function: the term with α as
a coefficient is zero if the Q-function is a perfect predictor
of the discounted utility of the next state. These updates also
lead to an off-policy algorithm, since the value of the optimal
action is learned independently of what action was actually
taken.5 The optimal Q-function is analogous to the optimal
utility function from Equation 4, since the Bellman equation
still applies:

Q∗(s, a) = Es′Ẽ
[
R(s) + γmax

a′
Q∗(s′, a′)|s, a

]
(7)

5As opposed to an on-policy algorithm, which learns the values only of
the actions being taken

In active reinforcement learning, an agent must decide
what actions to take. For model-free agents to understand the
consequences of their actions, they must explore the state-
action space by randomly choosing actions without regard
to one it believes maximizes the Q-value. After training,
and when the user believes the agent has gained significant
understanding of the environment, then the agent can exploit
a greedy policy to maximize its reward. Empirically, it is
best to gradually transition from a curious exploratory agent
to a greedy one over many iterations. This is known as
the exploration-exploitation trade-off, and is manifested in
an ε-greedy strategy that follows the greedy strategy with
probability 1− ε as ε decays over training iterations.

There is one glaring limitation however: learning the Q-
function requires observing every state-action pair many
times over for convergence. This is not possible even for toy
problems, so the Q-function must be approximated so that it
is no longer a lookup table. Often times a linear regression
model is used as the function approximator, often with hand-
crafted domain-specific features. Compressing a model into
a finite number of parameters also generalizes performance
to scenarios the agent hasn’t encountered before. Neural
networks have proven to be good universal function approx-
imators and in that they represent a large space of functions,
the optimal of which can be found expeditiously. While
Q-functions represented as linear models are guaranteed to
converge to the closest possible apprximation to the true Q-
function, nonlinear functions enjoy no such theoretical guar-
antees and often diverge wildly even in simple environments.
They have nonetheless been a key innovation for advancing
reinforcement learning methods, leading to the rise of Deep
Q-learning.

B. The PyGame and Flappybird Environment

In our case, actions are reliable and the transition model is
determined by simple projectile physics, but the agent does
not have access to this information since the goal is to learn
from only the raw pixel inputs. The state is the raw pixels
of four sequential frames of game-play. If the reader is not
familiar with Flappybird, a demo can be found here: http:
//flappybird.io/

II. METHODS

A. Deep Q-learning

Any neural network employed as a Q-function approxi-
mator is known as a Q-network [2]. Much work has been
devoted to alleviating the instability of nonlinear Q-function
approximators. It turns out that two of the largest impedi-
ments were actually quite obvious: many nonlinear function
approximators including feed-forward neural networks treat
examples as being 1) independent and 2) identically dis-
tributed across a stationary distribution. However, game-play
is inherently time series data in which sequences of states
of often high correlated, hence, the action-value Q(s, a) and
the target values (r + γmaxa′ Q(s′, a′)) are correlated. As
the agent learns, the distribution of states it observes is non-
stationary as it chooses ”smarter” actions; empirically, small

http://flappybird.io/
http://flappybird.io/

perturbations to the Q-function can significantly change the
policy [4].

Instead of updating the Q-functions using only one tempo-
ral difference update as in Equation 6, using an ”experience
replay” mechanism to smooth the training distribution by
sampling a subset of size K < D of the most recent
et = (st, at, rt, st+1) experiences or transitions. A queue
of the most recent D transitions is kept. For experience
replay, Bellman updates are applied sequentially to a subset
or minibatch of the stored experiences chosen uniformly at
random from the queue. Mnih et al. 2015 give a discussion of
the benefits of experience replay. The network loss function
for a minibatch at iteration i is the mean-squared error in
the Bellman equation with the optimal target values being
the approximate ones:

Li(θi) = E
[(
R(s) + γa′Q(s′, a′; θ−i)−Q(s, a; θi)

)2]
(8)

where the expectation is taken with respect to (s, a, r, s’)
experience tuples and reduces to arithmetic average over the
K experiences. Secondly, the network parameters are only
updated every C steps, so those used in the computation at
iteration i are θ−i , and they are only updated to θi when i
mod C is zero. This is contrary to supervised machine learn-
ing settings involving neural networks, since the network’s
loss functions depends on the network’s parameters from
a previous iteration. Yet this is correct, since the Bellman
equation seeks to adjust the estimate of the Q-value prior to
executing action a to that received in the state s′ following
a.

∇θiL(θi) = E
[(
R(s) + γmax

a′
Q(s′, a′; θ−i) (9)

−Q(s, a; θi)
)
∇θiQ(s, a)

]
(10)

Stochastic Gradient Descent is used rather than computing
the full expectation.

Another facet of learning the Q-function from raw sensory
input is that the state becomes only partially observable,
giving rise to a Partially Observed Markov Decision Process
(POMDP), which has less theoretical guarantees, but in this
case does not affect performance [5].

B. Convolution Neural Network Architecture

Convolutional Neural Networks are adept at extracting
low-dimensional, semantically meaningful feature vectors
from images using relatively few parameters.

The architecture of the deep Q-network suited to raw
image inputs was a three-layer convolutional neural network
followed by two fully connected layers. The final layers
involve reshaping the convolved layers and apply ReLU, an
element-wise activation function written as follows:

f(x) = min(0, x) (11)

This activation function approximates the softplus function
with a hardmax, which induces sparsity in the hidden layers
of the convolutional neural network. The output of the

CNN represents the action-value function, so sparsity is
encouraged, and it is preferred that the best action has the
highest value, while the other actions are near zero.

C. Extension to Multi-player Game-play

The game code was modified to add a second player sprite
independently controlled from the first. The game ends if
either bird dies and scoring is incremented only when both
birds successfully passing through a pipe. For simplicity the
first player is always red and the second player is blue so as
to not confuse the networks (even though images are gray-
scaled).

D. Cooperative Play and Rewards

In order for the system to score, both agents have to clear
a pipe. We feared that if both agents are rewarded equally,
the system would be vulnerable to getting stuck in an local
optimum where the first agent always clears the pipe and
the second agent would never be forced to play expertly. To
preempt this, we established the following rewards scheme:

Rewards Agent 2 Clears Agent 2 in Air Agent 2 Crash
Agent 1 Clears (0.5, 2) (0.5, 0.1) (0.5, -1)
Agent 1 in Air (0.1, 2) (0.1, 0.1) (0.1, -1)
Agent 1 Crash (-1, 2) (-1, 0.1) (-1, -1)

The table shows the rewards received by each agent under
each possible scenario. Agent 1 always leads Agent 2 in the
world, and the tuple (X, Y) means that Agent 1 received X
as a reward, and Agent 2 Y.

E. Training Procedure

We trained our single- and multi-agent neural networks
with the same hyperparameters as in [1]. The training
schedule was comprised of three stages: the ”observe” stage,
which lasted one hundred thousand time steps; the ”explore”
stage, which lasted two million time steps; and the ”train”
stage, which continued until the program was terminated. In
practice, the observe stage was adequate for training.

The discount rate, γ, was set to .99 to prevent overfitting
the agent from becoming short-sighted; ε, which determined
how often an agent plays a random action, was set to 0.2
initially, and decayed linearly to 0.0001 over the ”explore”
phase. The experience replay queue was constrained to hold
fifty thousand state-action-state-reward transitions.

Training lasted two and a half days for the single-agent
neural network lasted, and over five days for the multi-agent
network.

III. RESULTS

We have published Youtube videos of single agent6 and
two-agent flappy bird7 trained with our methodology. The
two-agent flappy bird took more than twice as long to train,
but this was on a cloud-based virtual machine with 8GB
Ram, 4 cores, and no GPU.

6single agent: https://youtu.be/sZHn_10Mo_k
7two-agent: https://youtu.be/y9ZQDuxpK44

https://youtu.be/sZHn_10Mo_k
https://youtu.be/y9ZQDuxpK44

A. Single Player Results

The maximum score we saw after two and a half days of
training was 527. By analyzing the trends in Figures 2 & 3,
it is simple to see that more training could yield higher and
more consistent scores.

Stage Games Played QMax Game Score
Observe 500 0.008 0
Explore 13,000 10.8 40
Train 14,000 12 209

TABLE I
SCORES TAKEN FROM EACH TRAINING STATE DURING SINGLE-AGENT

TRAINING.

Table II illustrates increasing confidence and game score
as the number of games played increases. Each game played
is indicative of one or more time steps. The agent became
exponentially more confident when transitioning from the
observation state to the exploration state, achieving a Q-
value of about 10.8. It is trivial to see that–if time allowed
for more training–the game score could surpass the level
of an experienced Flappy Bird player. This trend is best
represented in our multi-agent results.

B. Multi-player Results

The maximum score we saw after six days of training was
1093, but it could achieve higher and more consistent scores
with more training.

Figure 2 shows the score achieved by the system at the
end of each new game it played, as well as the 100-moving
average. Figure 3 shows the maximum Q-value for any action
the agent considered at any time step in game-play; this is a
measure of how confident the agent was in the best action.
Because the rewards scheme in Table 1 rewards the second
agent more for surviving, the second agent’s confidence
outpaces the first agent as the system learns to keep both
agents alive.

By the end of training, the Qmax for player 1 was 11.4123,
and that for player 2 was 15.6436 as Figure 3 shows.

Fig. 2. The score achieved by the agent by the end of each game-play
session.

Fig. 3. The maximum Q-value observed by each agent at every frame-step
(each game is comprised of a sequence of frame-steps).

APPENDIX

Our code is published at https://github.com/
iankm/FlappyDQL-MultiAgent. The master branch is
for single player Flappy Bird, the FlaPyBirdz branch contains
code for multiplayer. The Deep Q agents are implemented
as classes for modularity and scability.

REFERENCES

[1] Mnih, Volodymyr, et al. ”Playing atari with deep reinforcement
learning.” arXiv preprint arXiv:1312.5602 (2013).

[2] Mnih, Volodymyr, et al. ”Human-level control through deep reinforce-
ment learning.” Nature 518.7540 (2015): 529-533.

[3] Tampuu, Ardi, et al. ”Multiagent cooperation and competition with
deep reinforcement learning.” arXiv preprint arXiv:1511.08779 (2015).

[4] Russell, Stuart Jonathan, et al. Artificial intelligence: a modern ap-
proach. Vol. 2. Upper Saddle River: Prentice hall, 2003.

[5] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An
introduction. Vol. 1. No. 1. Cambridge: MIT press, 1998.

https://github.com/iankm/FlappyDQL-MultiAgent
https://github.com/iankm/FlappyDQL-MultiAgent

	INTRODUCTION
	Q-learning
	The PyGame and Flappybird Environment

	METHODS
	Deep Q-learning
	Convolution Neural Network Architecture
	Extension to Multi-player Game-play
	Cooperative Play and Rewards
	Training Procedure

	Results
	Single Player Results
	Multi-player Results

	References

