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Abstract

In this paper we compare the performance of decision trees constructed by
two different machine learning algorithms on binary classification problems.
The first is an information-theoretic algorithm that selects for attributes which
most aggressively reduce entropy in the training set. The second leverages the
concept of natural selection to build populations of decision trees probabilis-
tically. We show that while the performance of the algorithms is similar, the
underlying flexibility of the genetic algorithm allows for greater generality and
propensity to learn the data, but at the cost of tuning its numerous parameters.

1 Introduction

(Classification is a prototypical machine learning problem in which an artificial intel-
ligence agent learns a concept via induction to map objects to a discrete-valued class
or label based on available attributes. A real world object like a car or a house is en-
coded by an electronic representation. The encoding of an instance of such an object
i usually takes the form of a vector ©; = (o, as, ..., ), where an attribute a; in the
set o can take on a value from a set of discrete values v; = (vj1,vj2,...,j%). Thus
a set of n encodings, hereafter referred to as ”examples”, oriented column-wise is a
m X n matrix populated by values. The agent attempts to "decode” the real-world
identity of a novel example ©;, based solely on the values ©,’s attributes assume.
In supervised learning, an agent develops a strategy to predict identity classes by
"training” with examples that have already been correctly labeled with an identity
[2]. The hope is that the strategy will generalize to previously unseen examples.

The input to an agent undergoing training is an n element subset R of some
universe U of possible input examples correctly labeled with a class y; from a set Y
of possible classes

R = {(z1, 1), (T2,92), s (T, yn)}

Each y; was generated by some concealed, omniscient function f : & — ), which
the agent attempts to approximate with a hypothesis function h : U — Y', V' C
Y that minimizes a loss function L : Y x )’ — RT. Sometimes f is merely a



distribution, other times it can be a complicated, even nonlinear, combination of
attributes in U [2]. The loss function can also be quite complicated, as not all errors
should be treated equally. Sometimes, a false positive is far less consequential than a
false negative (incorrectly labeling a dangerous person as clear when passing through
airport security is an example). Thus depending on the application of a classifier,
loss should not always be solely related to accuracy.

Learning h can be then be interpreted as a local search for a global minima to L
through the space of all solutions H; and constructing a classifier can be reduced to
finding the best h given a set of input data:

h* = argiréig{l/(f(x), h(z)) ¥V z € R}

Once h has been selected, the finalized agent is then tested on a labeled test set T
satisfying 7 N'R = @. The most successful hypotheses will generalize, meaning they
correctly predict y; for novel examples [1].

One of the many tradeoffs involved in the search for h is one between overfitting
and generalization: the former prefers a complicated hypothesis with which to fit the
training data, but could fail to generalize because it memorizes or ”overfits” it. The
latter prefers a simpler hypothesis function that may generalize more, but the risk of
neglecting too much information is incurred. Too much bias towards either approach
leads to suboptimal error on 7. The agent is also vulnerable to error if there are
inconsistencies in the training labels, or if the choice of attributes and values is not
expressive enough to capture all there is to know about objects in . Conversely, if
the description of an object contains too much "noise”, then the complexity of the
search space increases exponentially in the number of attributes [3].

Decision trees are just one model used to construct a classifier that wields h,
others include Artifical Neural Networks, Support Vector Machines, and Reinforce-
ment Learning to name a few. The next section will discuss how decision trees are
represented, and what algorithms are used to construct them.

2 Learning Decision Trees

A decision tree is a deterministic approximation function which models the true map-
ping from an object © to a discrete-valued class or label y € . A decision tree may
be represented as a cascade of if statments applied to the attributes a of an object;
the cascade can be built into a tree down which objects are sorted by the conditions
imposed by the if statements until they reach a leaf node, which finally provides a
classification. Each internal node in the tree tests a single attribute, a;, and each
outgoing edge of the node corresponds to a possible value v; that o; can assume.
Any path from the root to a leaf is isomorphic to a boolean expression in conjunctive
normal form: each branch eminating from a node is a disjunction of attribute values,
and a path to a node is a conjunction of attribute tests [1]. An example of a decision
tree is shown in Figure 1.

Generally, decision trees are robust to misclassified training examples and missing
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Figure 1: An example of a decision tree that classifies motor vehicles

attribute values that affect small quantities of the training data. Even without such
errors, decision trees may experience difficulty approximating a function h on the set
of attributes simply because H is so expansive: with m attributes, a boolean function
in conjunctive normal form over the set of attributes that classifies each example,
there are 22" different functions for h. Searching for the globally optimal function is
subject to the same difficulties experienced by any local search algorithm [3]. Below
we discuss how two different algorithms approach this problem.

2.1 Information-Theoretic Methods

Learning a decision tree traditionally involves top-down expansion of a single decision
tree by selecting attributes to generate new nodes in a greedy way. The canonical
algorithms are ID3 and C4.5, both of which use a utility heuristic to recursively
choose which among the unselected attributes to serve as a new internal node in the
tree. The utility function is based on a statistical property, information gain, that
"measures how well a given attribute separates the training examples according to
their target classification” [1], which is based on the entropy, defined as:

Entropy(S) = — Z P(s)log, P(s)
k

Where S is any multiset, s € S, and P(s) is the probability of selecting s from S.
It is difficult to extract patterns from high entropy data because it is noisy; each s
occurs with roughly equal probability. Entropy is zero if there is perfect homogeneity
in a dataset [1]. The information gain of an attribute « is defined as how much the
knowledge of o reduces entropy in the training data:



Algorithm 1 Traditional Algorithm from [3]
Input: set of examples, set of attributes, set of parentExamples
Output: a decision tree

1: procedure ID3(examples, attributes, parent Examples)
2: if examples is empty then

3: return Plurality(parent Examples)

4: else if all ezamples have same classification then

5: return the classification

6: else if attributes is empty then

7 return Plurality(examples)

8: else

9: Q 4= argmax,, caitributes U Lty (v, ezamples)

10: > Utility is information gain in ID3 or gain ratio in C4.5
11: tree < tree with root attributea

12: for all values v; of o do

13: exs < {e: e € examples and e.ao = v;}

14: subtree <— I D3(exs, attributes \ «, examples)

15: add a branch to tree with label o = v; and subtree subtree
16: end for

17: return tree

18: end if

19: end procedure

Ryl
IR|

InformationGain(R, ;) = Entropy(R) — Z

VEY;

Entropy(R,)

Where v € v; = (v;1, V2, ..., Vi) 1S a set of all possible values associated with a
particular attribute, a;; and R, = {s € R|a; = v} is the subset of all training exam-
ples R for which «; takes on value v. The rightmost term, considered first without the
summation, is the entropy of that subset R,, weighted by the fraction of all R that
take on value v. The summation considers all values v that attribute a; can assume,
and piecewise calculates the remaining entropy in R by considering the entropy in
R, for all v € v;. Since it is assumed all examples in R take on exactly one value for
attribute «y, partitioning R by v is a mutually exclusive and collectively exhaustive
procedure. Thus InformationGain(R, «;) calculates the remaining entropy of R af-
ter the value for «; is known for each example. Algorithm 1 shows ID3, the traditional
information-theoretic decision tree algorithm (TA) implemented for this paper.

Limitations of ID3

ID3 maintains and refines only one hypothesis function A in its search, and further-
more, once a node is added to the tree, it is never reconsidered. This is analogous
to a hill-climbing search without the capability to backtrack or switch hypotheses.
Such greedy behavior encourages convergence to a local optimimum, rather than a
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global one. In this case, selecting the most "useful” attributes from a set of yet un-
selected attributes may result in a tree that fails to minimize L on 7T in its entirety.
Such subtleties are not a result of flawed mathematics, but rather overly optimistic
assumptions about how attributes and their values encode information.

The problem of overfitting the training data is a symptom of high dimensionality in
the attribute and value spaces, as well as noisy data, or too few examples. Overfitting
has occured whenever a hypothesis h chosen by the algorithm has smaller error than
another hypothesis h’ over R, yet h’ has smaller error over 7. With too many
attributes, those selected by the algorithm will have similar (and low) information
gains, which leads to deep trees and complicated hypotheses. With noisy examples
in R, the algorithm will add more internal nodes in response to what seems like a
more complex pattern in the data, when really such an aberration should be ignored.
Unnecessary complexity, at least deeper in the tree, can be detected using statistical
significance tests. If an attribute close to a leaf is found to be irrelevant, the node
is replaced with a leaf node whose classification is the plurality of the leaves below
it. Such a process is known as x? pruning, and is run with a set of labeled examples
separate from 7 and R once the decision tree has been built [1].

InformationGain also favors attributes with the most values because even minor
contributions to entropy reduction by each individual value will accumulate. The
edge case to consider is a unique identifier attribute, where there is a unique value
for every example. The tree would memorize these strings and perfectly predict the
label for every example in R. Such a tree would not recognize the unique identifier
of novel examples and would fail to classify them at all. More commonly, if there
are several attributes, each with many values, then ID3 will likely make a node for
each attribute, increasing the branching factor and complexity. The adversary here
is not the data itself, but the degree of uniformity found in the training data by
splitting on these unfortunate attributes [3]. After all, an attribute whose values split
the training data into equally sized subsets has provided no more information than
randomly partitioning the training data.

C4.5 and Other Corrected Algorithms

Algorithms such as C4.5 introduce new utility functions to limit the complexity of h.
(4.5 uses gain ratio to penalize attributes with values that uniformly distribute the
data. Gain ratio is defined as

CainRatio — InformationGain(R, «)

SplitInformation(R, «)

SplitIn formation(R, ) Z |]R| |R||)

VEV;
where v is value in v;, the set of values that any attribute «; can assume. The fewer ex-

amples that v partitions out of R, the less significant a;; becomes. Unfortunately, if an
attribute partitions too great a fraction of R, the denominator of SplitIn formation



becomes very small and GainRatio approaches infininity. There are ways to account
for this edge case.

2.2 Genetic Algorithms

Genetic algorithms attempt to simulate the mechanics of the theory of natural selec-
tion, which has proven to be a good real world optimization technique. Rather than
refining a single hypothesis as a traditional information-theoretic algorithm does, a
genetic algorithm (GA) will consider populations of hypotheses. Each hypothesis is
applied to the training data to generate a measure of fitness, fit : h x R — R! The
initial population of decision tree hypotheses is built randomly, and successive gener-
ations of offspring hypotheses are reproduced by mechanisms such as crossover and
mutation applied to selected parents in the parent generation. The qualities of the
individuals with the greatest fitness are perpetuated, either because some percentage
of the fittest parents are replaced into the new generation, or because the fittest in-
dividuals are most frequently selected for reproduction 2. A child hypothesis should
amount to a recombinant version of the best current hypotheses, with moderate to
intense probabilities involved.

One of the advantages of GAs is that they overcome suboptimality as it arises
from locally greedy decisions. GAs evaluate fitness on fully formed hypotheses, and
while many such hypotheses are rather poor, a small subset of the population will
contain useful traits, and such traits will be combined and perpetuated into highly
fit individuals.

There are many parameters to tune for a genetic algorithm to work properly.
Initializing the zeroth generation involves building every hypothesis randomly. To
build a random tree with reasonable size bounds, one can specify a probability that
the next randomly generated node is a leaf. The author found it best to use the
following formula to increase the probability of creating a leaf node as the depth of
the tree increases:

1

P(leaf)=1-—

Where || is the number of attributes, b is the expected branching factor for any
attribute selected uniformly at random, and d is the depth of the tree. This func-
tion approaches one, but is mindful of the expected size of a decision tree given the
dimensionality of the attributes involved.

After establishing the initial population, but before selection and reproduction
even begin, the replace percent of the population with the greatest fitness are au-
tomatically preserved for the next generation. If the algorithm mandates that every
generation have the same population size, then the remaining uncreated hypotheses

1Just as objects are encoded as vectors of attributes, decision tree hypotheses must also be
encoded. For the purposes of this paper, the tree itself was its own encoding, but this atypical.
2a GA can be interpreted as a variant of stochastic beam search



Algorithm 2 Genetic Algorithm from [3]

Input: fitness function, set of attributes, set of training examples, population size,
crossover probability, mutation rate, replacement rate

Output: a decision tree

> £fit () : tree X examples — R

1: procedure ID3(fit (), ezamples, popSize, crossProb, mut Prob, replace)

2 population < popSize randomly generated trees > limit size
3 repeat

4 new Population <— empty set

5: add the top replace x popSize most fit individuals to new Population

6 for i =1 to (popSize — newPopulation.size) do

7 if rand() < crossProb then

8 parentl < selectIndividual (population, £it())

9 parent2 < selectIndividual (population, £it())
10: > select from a fitness-proportionate distribution
11: child < reproduce (parentl, parent2)
12: > crossover happens with some probability in reproduce
13: else
14: child <— random tree
15: end if
16: if rand() < mutProb then

17: child < mutate (child)

18: end if

19: end for
20: until a max number of generations have been made
21: return the best tree found over all iterations

22: end procedure

are built either by crossover (which occurs about 60 to 80 percent of the time) or by
random construction just like the initial population. If reproduction occurs, parent
hypotheses are selected from a probability mass distribution applied to population
specified by:

B fit(h,R)
ZMEpopulation fit (h“ R)

Once parents have been selected, the child is initialized to a copy of one parent, with
a random subtree replaced by a random subtree of the other parent. Mutation, if it
occurs, could change the attribute of a node 3, change a node near the bottom of the
tree into a leaf, or change the classification of a leaf.

Like the traditional algorithm, the challenge for a GA is to avoid premature con-
vergence. If the population is too small, contains too little diversity, or enough

P(h)

3while preserving validity of the tree, that is, not changing the number of values an attribute
can assume



generations are not produced, then suboptimality is likely. Also, without introduc-
ing enough ”fresh” random trees, or not crossing subtrees aggressively enough, the
algorithm could spin on a local optimum.

3 Experimental Methods and Data Sets

There were three primary data sets: yea or nea votes cast by congress for bills, MONK
data, and mushroom examples to classify as poisonous or edible. The MONK data
contained three different sets, and were created for a competition and were naturally
challenging. Each algorithm, TA and GA, was run on all of the data sets; for each
run, the accuracy, precision, and recall of the algorithm was recorded for classifying
both the training and testing data. Some data sets had unique identifiers, they
were removed in preprocessing. Experiments mostly applied to the GA, since it had
many parameters to tune. Modifying the number of generations, crossover rates, and
population sizes are reported below.

4 Results

The author performed several experiments that measured the performance of the
Genetic Algorithm as a function of a single parameter. Classification accuracy was
used as a representation of overrall performance, but similar results would have been
found using precision and recall. The standard parameters used by the author were

Table 1: Standard Parameters used for the Genetic Algorithm

GA parameter Value
Population Size 100
Probability of Mutation 0.06
Probability of Crossover 0.75
Percentile of Top Individuals to Be Elites 0.06
Number of Generations 50
Minimum Fitness Allowed for Selection 0.5
Impose Fitness Penalty if Tree Too Large yes
Boost Fitness if High Precision yes

Select an Elite for Reproduction at Most  once

The reader should assume that unless otherwise specified by a graph or table, that
the standard values were used in an experiment.

There are several features of the implementation of our algorithm that merit
attention. The first is the control of tree size by placing a fitness penalty on trees
whose size exceeds a certain threshold. See the above section for details. Below is a
table comparing tree sizes with and without the fitness penalty:



Algorithm Performance on Congressional Data Set
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Figure 2: Comparison of the performance of the genetic and traditional algorithms
on their respective training and test sets for the Congressinal Voting data

Table 2: Effect of Fitness Penalty on Number of Nodes in Tree

Output Tree 195 96
Average of Final Population 169 68
Output Tree 507 290
Average of Final Population 451 127

Table 2 shows the results of ten runs of GA on the Mushroom data set, chose
because it had the highest expected branching factor of all data sets - 5.72. For each
run, the number of nodes in the output tree and the average number of nodes in
the final population were recorded. This data was averaged over all the runs and
the standard deviation thereof recorded. While there was no real difference in the
performance of the trees with and without size restrictions, it is clear that without
them, redundant nodes accumulate.

Figures one through five compare the accuracy, recall, and precision of the genetic
and traditional algorithms. Since the genetic algorithm is nondeterministic, it was
run ten times over each data set, with the average accuracy, precision, and recall
recorded for both test and training data. The standard deviation over the test data is
also recorded for the genetic algorithm since, at times, the output contains significant
variance. Because the traditional algorithm is deterministic, it was only run once.
The y-axis is understood to be performance of all three metrics: accuracy, precision,
and recall, since they are all values on the range zero to one.

Figures 6 through 9 hold all other parameters constant while varying one other
parameter deemed worthy of inspection.



Algorithm Performance on MONK-1 Data Set
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Figure 3: Comparison of the performance of the genetic and traditional algorithms
on their respective training and test sets for the MONK-1 data

Algorithm Performance on MONK-2 Data Set
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Figure 4: Comparison of the performance of the genetic and traditional algorithms
on their respective training and test sets for the MONK-2 data. Note the maximum
performance on the range is only 0.8



Algorithm Performance on MONK-3 Data Set
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Figure 5: Comparison of the performance of the genetic and traditional algorithms
on their respective training and test sets for the MONK-3 data

Algorithm Performance on Mushroom Data Set
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Figure 6: Comparison of the performance of the genetic and traditional algorithms
on their respective training and test sets for the Mushroom data



Accuracy of GA as a Function of Population Size
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Figure 7: The accuracy of the genetic algorithm was recorded for varying population
sizes, averaged over five runs. Only three data sets were used for clarity

Accuracy of GA as Function of Number of Generations
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Figure 8: The accuracy of the genetic algorithm was recorded for varying numbers of
generations. Each point represents the average of five runs.
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Accuracy of GA as Function of Crossover Probability

o

®
—‘\
|

== congress accuracy

monk-1

===mushroom

Accuracy of GA Algorithm
)
@

o
IS

0.2

0 0.2 0.4 0.6 0.8 1 12

Crossover Probability

Figure 9: The accuracy of the genetic algorithm was recorded for varying probabilities
of crossover. Each point represents the average of five runs. Only three data sets were
used for clarity.

5 Discussion

Based on the results represented in figures one through five, there is relatively little
difference in performance between the traditional and genetic algorithms, on average.
Because the genetic algorithm is probabilistic, performance metrics such as accuracy
are subject to what seems to be a discrete normal distribution. In some cases, even
when the expected accuracy of the genetic algorithm is lower than that of its tra-
ditional counterpart, a particular run of the GA may outperform the deterministic
algorithm. One such example was perfect learning (on all three performance metrics)
of the Mushroom data by an instance of a genetic algorithm, albeit the traditional
algorithm was not far behind.

An advantage of the traditional algorithm, evaluated with either information gain
or gain ratio, is that only one tree is considered, and it is always the same size for
the same input, making the algorithm essentially linear in the number of attributes
and examples. It is also completely deterministic and performs reasonably well on
"nice” data sets. The genetic algorithm differs from the traditional one in that it
exhibits greater flexibility and robustness, but at the cost of longer runtime and
highly application-specific parameter tuning.

It is not recommended to use a genetic algorithm when a simpler, traditional
algorithm with similar performance can be applied. Firstly, the genetic algorithm
is likely to add (possibly many) redundant nodes, which leads to loss of clarity if a
human user wishes to actually view the tree. Secondly, the genetic algorithm requires
many tree traversals regardless of how optimized the implementation is. If the number
of values most attributes can assume is large, then the branching factor of the tree is
high, leading to expensive operations. Of course increasing the population size linearly
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increases runtime, and increasing the number of generations leads to an expected
O(n?) increase in runtime (depending on how deep traversals go, whether trees are
deep copied, how random trees are generated, etc). Lastly, there are several subtle
pitfalls that can result from poor parameter choices. For example in Figure 8, choosing
too few generations could cause performance to fall 10 to 15 percentage points short
of that obtained by true convergence. Likewise, allowing too many top-performing
"elites” to be replaced into the next generation would result in lower diversity and
likely premature convergence to a suboptimal result. The risk of overfitting the
training is quite large. Compare the difference in performance of the GA on the
training and test sets in figures one through five; although the author’s standard
parameters effectively prevent overfitting, the difference could be quite marked. It
should be noted that the GA’s confidence on training data is most deceptive on the
toughest-to-learn data sets (MONK-2 in Figure 4).

However, on data sets that are particularly tough for the traditional algorithms to
learn, the genetic algorithm at least possesses the potential to do well, if by random
construction. Again in Figure 4, the GA outperformed the TA on the test examples
for all three metrics. Another advantage of the genetic algorithm is it considers the
global performance of an entire classification tree, which is ultimately more relevant
than the local attribute-by-attribute consideration of the greedy traditional algorithm.

Although no recipe for an immediately portable genetic algorithm exists, a couple
of generalizations can be made. All else being equal, the most important parameter
is the number of generations: Figure 8 shows there is really no upper bound for this,
but performance can quickly and unpredictably deteriorate if it is below a certain
threshold, say 40 generations. Population size, however, is more flexible based on the
results in Figure 7. The author theorizes that for a proper tree encoding, a population
as low as 20 can generate optimal results if the number of generations is high enough,
all other parameters being equal. An optimal value for elite replacement, if the user
decides to employ such a strategy, should be rather low, say around 10 percent. This
is especially true if the algorithm mandates a steady population size. The author
believes that replacing more than the top 40 percent into every new generation would
result in premature convergence, and indeed it would challenge the definition of elite.
One must be vigilant that the elites don’t all converge to essentially the same tree
too quickly; diversity within elites can be leveraged to produce even better trees.
Lastly, when selecting individuals for reproductin based on a fitness-proportionate
strategy, it is recommended to cap the number of times an elite can be selected, if
at all. Without such restraints, it is likely that ”incest” would destroy the critical
structures that contribute to an elite’s good performance.

It is worth investigating why, even with massive population sizes and excessive
crossover or mutation rates, a near-optimal decision tree was not produced by the
genetic algorithm. Here the author speculates that the structure of a decision tree
itself is to blame. One major assumption of a decision tree is that attributes are
independent of one another; that the information obtained by partitioning the training
set on one attribute does not influence how to partition the data set with other
attributes. This is a rather a naive assumption that rarely manifests itself in real
world scenarios. If, for instances, examples could be split based on pairs of attributes,
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or functions applied to pairs of attributes, or even larger subsets of attributes — then
perhaps the genetic algorithm could more successful. However, the added exponential
growth of power sets would probably make algorithm intractable.

6 Conclusions

Machine learning has progressed tremendously in the design of algorithms for specific
purposes under moderately stringent assumptions. Increasing the generality of an al-
gorithm, if it can be done at all, is costly either in terms of the number of parameters
or time complexity. Decision trees are no different. Information-theoretic algorithms
for decision tree learning perform very well on learning simple concepts from the data,
and are flexible enough to handle high dimensionality in the attribute space. How-
ever, there comes a point when the complexity of the concept to be learned cannot
be achieved by a locally greedy search. A genetic algorithm has the potential to learn
a broader class of concepts and is in this way more general. Genetic algorithms are
difficult to optimize since there are so many degrees of freedom, and often the opti-
mal parameters are highly application specific. For increasingly complicated search
spaces, the time complexity of genetic algorithms increases exponentially because it
assumed that the depth of the decision trees grows, as well as the population size and
generations. For both of these algorithms, premature convergence to a local optimum
is always an issue. In general, one should apply a traditional algorithm first, and only
thereafter a genetic algorithm.
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