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Knowledge bases are an effective tool for structuring and accessing large amounts of

multi-relational facts and are instrumental in many large-scale information processing

systems. However, inferring missing facts becomes a crucial challenge since knowledge

bases are often woefully incomplete, especially in broader domains where information

is sparse. We consider the task of learning low dimensional embeddings for Knowledge

Base Completion and make the following contributions: 1) a novel embedding model,

ModelE-X, that uses few parameters yet outperforms many state-of-the-art, more com-

plex algorithms, 2) the realization that the often-unreported metric of relation ranking

yields valuable insights into algorithms’ behavior and 3) we observe the macro-average

of ranking metrics across relations, which treats all relations equally despite their distri-

bution, is a better indicator of generalizability, yet it is also unreported in the literature.

We will also discuss algorithms that leverage textual data and long-range path queries.
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CHAPTER 1

INTRODUCTION

Knowledge Bases (KBs) represent structured information in a way that is convenient

for inference and computation. Internet companies leverage KBs to improve search

results on factoid queries, such as Google’s Knowledge Vault [7], Microsoft’s Satori [32,

24] and are indispensable for tasks like question answering. they help disambiguate

entities, and provide references to related sources of information [8, 62, 61, 58].

An important goal in the information retrieval and natural language processing com-

munities is to extract structured facts from unstructured information, which can improve

understanding of intent and context surrounding an unstructured query in a search en-

gine, for instance. Modeling facts and events is particularly relevant in modern chal-

lenges such as open domain question answering, conversational ”infobots”, and reading

comprehension engines, which are required to perform complicated, multi-hop infer-

ence over a large set of relevant facts in an evolving context. It is critical to encode this

knowledge in compact yet expressive representations, thus, fast and effective knowledge

representation algorithms are fundamental for the next generation of artificial general

intelligence agents [41, 18, 53].

A knowledge base (KB) over schema of E entities from a set E and R relations

from a set R is a set of triples T = {(h, r, t)} where h, t ∈ E , r ∈ R, which can be

interpreted as a knowledge graph (KG) with edge labels from R and node labels from E .

An embedding for h is denoted eh ∈ Rd, which are used interchangeably. Knowledge

bases over any useful domain are incomplete, as they are often constructed by hand or

semi-automatically [42, 51]. Knowledge Base completion is the well-studied task of

determining which triples ought to be in the KB, which is usually treated as a ranking

problem; we discuss it in more depth in 1.1
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Knowledge base completion is one of many tasks under the umbrella of statistical re-

lation learning, which is loosely defined as representation learning to capture patterns in

the relationships that exist between elements of a graph-structured dataset. Other tasks

commonly investigated are predicting properties of nodes in the dataset, and clustering

nodes. Algorithms for KBC differ depending on what data the KB is constructed from

and how. Some algorithms learn based only on the single links expressed in T , some

consider paths and deeper structures involving chains of links, and many leverage large

textual resources with NLP pipelines including entity linkers and language models.

Recent areas of research have evolved from the overlapping desires of completing

existing knowledge graphs and extracting relations or facts from new information (in

either batch or online settings), with the ultimate goal being an accurate, never-ending,

and self-maintaining knowledge base system[19, 4, 36, 38]. Many researchers have

turned to neural approaches to find semantic spaces for knowledge graph entities and

relations, sometimes extending this space to include vector based language models as

well. This is largely due to the success of embedding models to capture generalizable

and abstract concepts from large amounts of noisy data that lie on complex underlying

manifolds. There remains much work to be done, however, in designing models to align

KB representations with textual mentions of facts and what it means to train such models

on KG and textual triples jointly.

1.1 Knowledge Base Completion

As distinguished from algorithms to construct a KB (Construction or Population) from

raw text or small seed KBs[4, 38, 37], Knowledge Base Completion seeks to infer miss-

ing links in a KBs such as Freebase [1], YAGO [43], and DBPedia [22], which, though

enormous, are lacking in coverage [51]. The problem of Construction faces a slightly
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different set of challenges than Completion, namely, how to handle conflicting informa-

tion, possibly from multiple sources with varying degrees of credibility [35]. In the

setting of Completion, we assume that a KB has already been partially and accurately

constructed. We do not assume it is subject to real-time updates, though in practice

this is the case since current events change the state of the world frequently and unpre-

dictably. Also, scalability is paramount, as real world KBs must accommodate massive

amounts of facts, possibly the entire internet’s worth. Some good reviews of KBC are

[32, 50]

In many cases, the missing facts can be entailed by the facts that are recorded, and

more often, they can be inferred by a probabilistic model conditioned on the existing

facts. Here we primarily discuss embeddings or latent feature models for KBC, which

learn dense parameterizations of entities and relationship operators and are adept at

modeling global patterns in large, noisy KGs, a topic which is reviewed well in [32].

Modern KB schemas define potentially millions of entities and billions of facts; rep-

resenting these items symbolically makes it challenging to meaningfully compare and

operate on entities. Having a fixed d-dimensional embedding of each entity 1) simpli-

fies storage requirements, 2) allows for natural comparisons between entities and 3) a

mathematical structure for interpreting relationships as operators over entities, which

allows for capturing long-range structural information in the KG [3]. This framework

also integrates well with existing techniques for neural language modeling techniques

for textual data, where word embeddings can be co-trained with entity embeddings as

in [16].

There are also tensor and matrix factorization techniques; the algorithms and limita-

tions of which we describe briefly in 2.1.1 and can be found in more detail in [31, 39, 17].

There is a wide variety of research in using textual resources to refine representations of
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entities and relations, for instance, algorithms using descriptions of entities, algorithms

similar to relation extraction, and algorithms that co-train language models and entity-

relation models. We discuss these in depth in 2.3. There is another field of research

devoted to deeper understanding of the structure in the existing knowledge graph, which

stemmed from compositional extensions of earlier embeddings models; see 2.2.

The framework for nearly all modern automatic KBC algorithms that learn embed-

dings of entities and relations use the same machinery: in addition to learning said

embeddings, each model defines a scoring function f(h, r, t) of a triple over those em-

beddings, a (pairwise) margin ranking objective1, and a method of sampling “false”

triples under the somewhat unrealistic “closed world” assumption that any triple not in

the overall KB is untrue2. The following loss function contrasts positive and negative

triples (regularization term omitted)

L(ALG) =
∑

p∈T ,n/∈T

[γ + fALG(p)− fALG(n)]+

and is minimized by mini-batch gradient descent over (p, n) pairs where p = (h, r, t) is

a sampled positive triple, n ∈ {(h′, r, t), (h, r′, t), (h, r, t′)} is a sampled negative triple

with exactly one slot corrupted s.t. n /∈ T , and [·]+ = max(0, ·) Usually, whenever p is

sampled, the two corrupted-entity versions of it are added to the batch. We extend this by

adding the relation-corrupted triple and perform relation ranking during training3.3.2.
1[45, 44] instead maximize the conditional log likelihood, but the pairwise ranking loss is more scal-

able.
2However this assumption can be flagrantly violated. A relaxation is the Locally closed world as-

sumption, which asserts that a local subgraph is complete (that is, for a subject-predicate pair, all triples
of the form (el, r, )̇ not in the KB are assumed to be false.
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1.2 Importance of Knowledge Bases and their completion

1.2.1 Factoid question answering

Not only are KBs useful as “lookup” tools for questions like “Where was Abraham Lin-

coln Born”, but the facts therein serve as the fundamental units of inference to harder-

to-answer queries, such as “How many pages of text can DNA encode?”. If an answer to

a factoid question cannot immediately be referenced in a database or knowledge base,

such as the previous query, information retrieval techniques are used as a backup: a

search engine will try to find sentences across the Internet’s documents that likely con-

tain the answer. However, information is spread across the Internet such that no single

sentence likely answers one of these harder “tail queries”. The hope is that storing

structured information in the form of a knowledge graph will make inferring an answer

a more reliable option if an answer isn’t readily available in on particular sentence on

the Internet. For instance, it may be stored in the KB that human DNA holds about 725

MB of data, and it may separately be stored that a page of digitized text contains about

3 KB. If facts are stored in a vector space, then modern neural algorithms for inference

with sophisticated attention mechanisms could identify these two numbers as relevant,

and will then theoretically be able to do arithmetic operations on these two numbers.

1.2.2 Relation extraction

Relation Extraction, a close cousin of AKBC, is the task of classifying which relation-

ship from a defined schema such as R applies to a textual instance in which entities

have already been recognized, some modern works include [40, 63, 16, 12, 59]. Typ-

ically the text between two recognized entities from E is subject to classification, but
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broader context may be necessary. It can be treated in a supervised fashion if manual

annotations for the schema exist, or as a distant supervision problem if a sufficiently

populated knowledge base of the same schema exists [28]. Since manual annotation is

expensive and the most relevant relation extraction must take place on vast quantities

of data and large schemas, the field has moved toward using the schemas in existing

structured databases or knowledge bases as labels and focus on aligning sentences with

records in these sources. One drawback, however, is that the pair of entities may be as-

sociated with many relations in the knowledge base, and it may not be clear which one

is expressed by a particular textual instance (leading to a weak supervision problem).

Another drawback is that more than one relation may be expressed in a text segment

bookended by entities, a challenge explored in [61].

1.3 Learning Knowledge Graph Parameters

1.3.1 MAP Estimation of Parameters

Whether a triple should exist in a KB can be represented as a Bernoulli random variable,

the parameters for which can be found by MAP estimation.

max
Θ

∑
x∈T ∪T ′

logBer(yx|σ(f(x; Θ))) + logp(Θ|λ1) (1.1)

where each triple x (positive or negative) is labeled yx and scored by f parameterized

by Θ. The prior’s strength is given by λ1. This can be reformulated as a regularized loss

minimization objective where L can be defined as L = −logBer(y|f(t; Θ)) or as the

squared error loss ||y − f(t; Θ)||:
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max
Θ

∑
t∈S∪S′

L(σ(f(t; Θ)), yt) + λ2reg(Θ) (1.2)

1.3.2 Approximation to MLE/MAP

As the need for scalability becomes more preeminent, the techniques for learning the

embeddings and other parameters have relaxed to allow for easier parallelization. We

can eliminate the summation over all negative triples to speed up learning while still

expressing our desire to score positive triples higher than candidate negative triples.

That is, negative triples need only to be ”more incorrect” than the positive ones [32].

Hence we can sample some negative triples to contrast with the positive ones, which

also solves another problem with the MAP estimation approach:

The primary impediment of conditional probability models is computing the nor-

malizing denominator term, which usually involves summing over entire vocabularies or

dictionaries. An approximation can be found using negative sampling [21]. Toutanova

et al [45, 45, 48] have successfully used this technique to approximate the log likeli-

hood of the conditional probability of a missing entity given the other entity and the

relationship p(t|r, h):

p(t|r, h) = ef(h,r,t)∑
h′∈T ′ f(h′, r, er)

(1.3)

This is analogously defined for p(h|r, t) and p(r|h, t). The approximation comes

from sampling negative samples (anywhere from 1 to about 200) for the denominator

with type constraints optionally enforced.
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1.3.3 Pairwise Margin Ranking and Negative Sampling

We can further relax the sampling to contrast each positive fact with a single sampled

negative fact, with the constraint that the negative fact is closely related to the positive

one, but with one field “corrupted”. We can then contrast the positive and negative

sample using the large margin loss, which is faster to compute than the approximate

likelihood above. Of course, we lose the advantage of working with probabilities.

Specifically, we subsample a training knowledge graph S from the real knowledge

graph, and put the held out triples in a test set. For every positive triple t ∈ (el, r, er)

in S, create N negative samples by randomly corrupting one of the fields in t such that

the corruption does not yield any positive sample. The goal is to learn parameters (the

latent representations of constituent entities and relationships) that score positive triples

higher than negative ones, for any scoring function f , like TransE, for instance. The

following loss function expresses these desires by maximizing a large margin ranking

objective.

L =
∑
t∈S

∑
t′∈S′

[
max

(
0, γ + f(t)− f(t′)

)]
(1.4)

In 1.4, t is a positive triple (el, r, er) and t′ is a negative triple in one of three forms:

(e′l, r, er), (el, r
′, er), or (el, r, e′r) for all (or some subset of) e′l, r

′, or e′r which make

each respective triple ”false” or not in the known KB. Learning is achieved by mini-

batch stochastic gradient descent.

Some scoring functions like TransE take on an energy interpretation: true triplets

favor lower energy values. TransE and many other models enforce a unit ℓ − 2 norm

constraint on the entity vectors.
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Typically, all embeddings are initialized randomly subject to the constraints, and

after each iteration all entities are typically renormalized again. For a mini-batch of

randomly selected positive triplets, N negative samples are generated, and for each

positive-negative pair, an SGD step is taken. 3

Typically the margin is selected from {0.5, 1, 2, 10} and the learning rate for SGD is

tuned over {0.001, 0.01, 0.1}. Distance functions are either ℓ − 1 or ℓ − 2 norms. This

method of margin ranking can take a long time to converge.

1.4 Evaluation Metrics

Evaluating a KBC system is a nuanced task that depends on the environment the knowl-

edge graph was constructed from and is expected to operate in, and what assump-

tions/biases exist in those pipelines. It is further complicated in systems that leverage

text, as the quality of the AKBC system now depends on the distribution generating

the observed text, as well as any errors and noise propagated by textual processing and

representation learning.

We evaluate the model on the Link Prediction task, which is to predict, say, the best

h given r and t to yield a triple that is most likely to belong the KB4. A list of scores

is generated by applying fALG(h
′, r, t) ∀h′ ∈ E , which, upon sorting, hopefully yields

a highly-ranked h that makes the triple true. The loss attempts to concentrate mass on

observed triples, but it provides only a rough approximation to the ideal list (specifi-

cally, it might not score obviously incorrect triples any lower than partially incorrect

triples, as long as the positive triple is scored above both). We report several ranking
3for TransE, N = 1, but for other methods it is larger
4Simiarly we also predict the best r or best t.
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metrics: Mean Rank, Median Rank, Mean Reciprocal Rank (MRR), and Hits@10 [15].

In practice not all h′ ∈ E should be included in the list, only those for which it is known

(h′, r, t) /∈ T so that the model isn’t penalized for ranking one correct answer over

another; this is known as the “filtered” (as opposed to “raw”) metric.
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CHAPTER 2

RELATED WORK

The following sections discuss primarily discuss models that learn latent features for

units of a knowledge graph, such as entities, relations, and paths. The representations

are learned using statistical techniques from large amounts of data. However, the KBC

community is vast and we will briefly mention some other notable techniques in 2.4.2.

2.1 Latent Feature Models

Latent features models for KGs operate under the assumption that the score of a triple

depends only on learned latent features of entities and relationships. Patterns in the local

and global structure of the KG are intended to be captured by these features. There are

wide variety of these models each of which focus on specific kinds of patterns; it is

often the case that models can be combined to complement their strengths. The primary

drawback of all these methods is interpretability of the learned representations, and

the difficulty of enforcing logical and type constraints in a way that can be expressed

mathematically and computed efficiently [2].

These algorithms are motivated by the recent success of user-item matrix factoriza-

tion techniques for single-relational data to find embeddings of users, items, or both

that lead to effective recommendation tools. However, unlike user-item matrices, the

challenges of multi-relational data are twofold. Firstly, relationships are directed and

are often subject to logical or type constraints that may not be captured by traditional

recommender systems. Secondly, two distinct entities can exhibit multiple relationships

between them (think of the many relationships that can exist between, say, the president

of the U.S. and its government).

11



2.1.1 Matrix Factorization

There are a number of models that approach KBC as a tensor or matrix factorization

problem [33, 34, 47, 31] which inspired others to define entity and relation specific

embeddings [3, 42, 11].

The first approaches to tackling multi-relational data in the context of knowledge

bases was to use tensor factorization methods, where a ”third” dimension was added

to account for multiple relationships between entities. It followed naturally that down-

stream tasks operated on the latent attributes of the constituents of the tensor.

The drawbacks are of course scalability, as these tensors may have enormous dimen-

sion.

2.1.2 Entity-specific Embedding Models

Model E

ModelE defines two vectors in Rd for each relation to allow only certain entities in the

head and tail position of a triple. That is, for the score of a triple to be high, both the

head and tail entities must align with their respective relation embeddings components

rh and rt [39]:

fModelE(h, r, t) = eh
Trh + et

Trt

It has Ed+ 2Rd parameters, and aims to give high scores to true triples.
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The TransE Family

Inspired by the semantically meaningful translations of word embeddings, the TransE

model on a positive triple (h, r, t) learns embeddings such that eh + r ≈ et [2]

fTransE(h, r, t) = ∥eh + r − et∥

It has Ed+R parameters and seeks a low score for positive triples.

There are several spinoffs of the TransE model that try to improve on its weaknesses

in modeling relations that aren’t “one-to-one”. TransH is a model that learns a hyper-

plane for each relation and models translations within it [48], as well as TranR: [26]

and TransG [54].

Bilinear Family

For Bilinear (DistMult) and BilinearDiag [60], each relation r is parameterized by Wr ∈

Rd×d (which is constrained to be diagonal for BilinearDiag).

fBilinear(h, r, t) = eh
TWret

Bilinear has Ed+Rd2 parameters, which can be quite slow and prone to overfitting.

It should be noted that Google released trained entity embeddings, which some au-

thors use to initialize their own embeddings. For instance Yang et al learn a (nonlinear)

mapping from the 1000-dim space of the released Word2Vec entity vectors to the d-

dimensional KB entity space in their work 1 [60]. Initialization of a vanilla Dist-Mult

model this way provides as almost as much improvement as the compositional path

training of a Dist-Mult model, showing that initialization of entity vectors merits careful

attention, especially when operating over smaller datasets.
1Pre-trained entity vectors with Freebase naming: https://code.google.com/archive/p/

word2vec/
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Structured Embeddings

Structured Embedding [3] finds k dimensional representations of entities and two k× k

matrices for the relationship, L1 and L2, such that f(L1el, L2er) is small for positive

triples for some distance metric f like ℓ− 2 norm. Teh two different projection matrices

account for asymmetry in relationships. If L2 is fixed to be identity, then SE reduces

to TransE. Bordes et al demonstrate that TransE is superior to SE for KBC on FB15k

and FB1M datasets. TransE does not perform well on relationships in which 3-way

dependencies between el, r, ander are critical, but these types of relationships are not

predominant in large datasets such as FreeBase. [2]

Neural Tensor Model

Neural Tensor Model (NTM) [42] has two k-dimensional vectors as well as a k × k

bilinear operator L for each relationship to allow for extremely expressive connectivity

patterns between the entities, and between entity and relationship. It scores triples as:

2.2 Compositional “Path” Embeddings

Knowledge Base Completion learns suitable models for predicting single edges, or

triples, in a graph. However, these representations may not be suitable for scoring path

queries, or queries that span a path of relations and entities in the graph. These queries

arise quite frequently in question answering, as factoid questions such as “Where were

Abraham Lincon’s parent’s born?” refer to two or more relations, namely ”parents of”

and ”born in”. This setting requires reasoning over numerous entities and relations

along a path, and additionally, the multiple paths that can exist between pairs of enti-
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ties [20, 29, 13].

A parallel approach to KBC utilizes features in the structure of the graph, particu-

larly paths therein, and train on multi-hop path queries [46], where, for example, the

appropriate tail entity is sought after starting at a head entity and traversing a path of re-

lations [13], sometimes with a notion of a path probability [20, 25]. Some models like

TransE and Bilinear are naturally compositional and suited for this setting [10], other

times heavier compositional models like LSTMs are employed [29].

The discovery of paths in text is closely related to the concept of knowledge graph

paths, and [23] show that the words in a textual instance can be used to compute the

similarity of dependency paths that connect them. If the textual instance is anchored by

two entities, then a system can draw inferences about the relations between them based

on the dependency parse of the context surrounding them.

More recent work involving path representation learning with RNNs has evolved to

incorporate the entities, not just the relations, along a path for learning. Additionally, se-

quence to sequence models offer improved performance by incurring loss incrementally

along a path, not just at the end [6]

2.3 Leveraging Text and Relation Extraction Techniques

There is another very important community devoted to leveraging textual mentions of

KB triples [45, 46, 14, 49, 48, 52]

The intuition motivating automatic relation extraction from text, and the related task

of AKBC from text, is that for any pair of closely occurring entities recognized in a doc-

ument, the context between them should present some kind of information about their
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relationship, even if it requires some level of inference. “distant supervision”, as it is

called, avoids the expensive undertaking of labeling these textual instances with their re-

lationship from the KB schema [28]. While not directly addressed here, a good resource

covering leveraging knowledge bases for distant supervision in relation extraction can

be found in [52]. It is desirable for AKBC systems to somehow leverage the vast quan-

tities of textual data mined from the Internet, and this intuition has proven fruitful in

some of the models discussed here [44, 45].

In order to learn entity and relationship embeddings from text for AKBC, we must

have text that is annotated with entities and relationships, which requires both a schema

of entities and relations. Errors from the entity linker will propagate, as linking is often

confounded by the nuisances of natural language such as polysemy. Labeling a sentence

with the relationship from R that it represents is a trickier problem addressed by relation

extraction algorithms. However, distant supervision - labeling text that between two en-

tity anchors with the relation that appears between those entities in a KB triple - is often

used to quickly label large quantities of text with (perhaps multiple) relationships [28]

2.3.1 Separate Models for KB and Text embeddings

One of the first and simplest approaches for relation extraction is to extend a KB em-

bedding model with a relationship identifier: learn a model that scores a relationship

given a textual mention, and another model to encode the interactions between entities

and relationships in the KB [52]

The relationship scoring mechanism g(m, r) works by summing the word embed-

dings for the words in the textual mention m, and then taking the dot product of that

with a relationship embedding r. The relationship that gives the highest dot product
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value has the highest rank, and is most likely to be expressed by the text. Updating

the embeddings of both words and relationships can be done with SGD with some con-

straints. The same margin objective and training procedure that is described in section

?? can be used to build a relation ranker to find the best relations for a given text.

The KB model is TransE. These two models can be combined to define a relation

extractor for KBC in the following way: for every unique pair of entities (el, er) that

appear in the test set, all the corresponding textual mentions M(el,er) are collected and

best candidate relation(s) r̂ for them is predicted as:

r̂ = argmax
r∈R

∑
m∈M(el,er)

g(m, r) (2.1)

The candidate(s) r̂ is/are then re-scored by incorporating the TransE model:

f(el, r̂, er) =
∑

m∈M(el,er)

g(m, r) + h(el, r̂, er) (2.2)

Where h(el, r, er) outputs the rank of r in the list of all relations as computed by the

TransE model2.

The first of the two stages can be perceived to filter only those relations deemed

plausible by the textual model, and the final stage selects the relationship that best fits the

KB model. The entire relation extractor thus encourages relationships to be consistent

with the text and KB, despite that the parameters for the two are not jointly learned.

They train a scoring function (dot product) to measure the similarity between the

text relation embedding (bag of words) and the KB relation embedding. And they also
2specifically, h outputs whether the rank is greater than some pre-defined threshold
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train a linear scoring function (TransE) for positive triple in KB. They train both of them

with ranking loss (hinge loss). In relation extraction, they use the first scoring function

to find candidate relation and then combine the second scoring function to re-score the

candidate relation. They use NYT+FB as training data (52 possible relationships and

121034 training mention where most of them has no relation).

2.3.2 Entity and Text Cooccurance

One of the first works to jointly train representations of entities and relationships with

corresponding textual mentions was Universal Schemas [39]

Incorportating textual instances of KB triples began with the seminal paper on Uni-

versal Schemas by Riedel et al. They presented a variety of models (F, E, and N) that rely

on a factorization of a relationship vs surface-norm matrix. The primary contribution

of the work behind Universal Schemas is that the approach of distant supervision can

be generalized by taking the union of all data schemas - including structured databases,

knowledge base, and surface forms (raw text) - to yield a virtually infinite set of rela-

tions. Riedel et al demonstrate that combining textual and structural relations improves

the ability to reason about both the structured and unstructured data [39]

Rather than modeling the semantic equivalence between relationships (”and force

textual meaning into pre-defined boxes”) they take the approach of modeling impli-

catures and asymmetry in the data probabilistically: while ”historian-at” may imply

”professor-at”, the converse is not always true and furthermore, the two relations should

remain distinct even though they may related enough to be clustered, as some algorithms

do.
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All of the models they introduce operate on a fact matrix T of size |E|2 by |R| where

a cell at index i, j in the training matrix is binary random variable yi,j which takes the

value 1 if the fact is true, 0 otherwise. The goal is to regress on the unknown cells at test

time using

p(yi,j = friedel(el, r, er) = p(1|θ) = sigmoid(θ) (2.3)

Where θ is some latent feature representation of the entites and relations in the facts

matrix. We will briefly describe the different models θ represents, while we save how

they learn θ for section ??.

In Model F, the fact matrix is factorized into the product of two matrices A ∈ R|E|2×k

and V ∈ Rk×|R|. This model is well studied and allows for asymmetry between the

subject and object position by skewing the relationship embedding.

In Model N (the ”neighborhood” model), the confidence of a tuple is given by the

confidence of other tuples that share the same relation. Theta is a set of weights defined

for every pair of relationships: θ(el,r,er) = wr,r′ =
∑

(e1,r′,e2)∈T \(el,r,er) wr,r′ which gives

rise to a log linear classifier for each relation r.

Their final model, Model E (an abbreviation for Entity), captures the compatibility

between entities and the subject/object positions of relations by learning a continuous

vector representation of dimension k for each entity type. Two vectors for each relation

are learned: rs for the subject and ro for the object entities to accommodate relationships

that ”fan in” or ”fan out” a multitude of entity types. The score is given as

f(er, r, el) = rTs el + rTo er (2.4)

19



The benefit of universal schemas is the ability to reason across myriad target relations

that appear across a broad spectrum of natural text, and as an instance of never-ending

learning, the universal schemas can be incrementally updated.

2.3.3 Entity and Text Co-occurance: TEKE

Another method which builds on the concept that related entities should exist in similar

or overlapping textual contexts. Instead initializes and fine tunes entities/relationships

with weighted averages of word embeddings of the words that appear in local neighbor-

hoods surrounding the labeled entities/relationships.

Wang et al. build a ”co-occurance network” where nodes are the union of words

and entities and edges are counts of co-occurances of the two nodes across all textual

instances. They still use TransE model for ranking, but augment the entity/relationship

embeddings with ”textual context embeddings” to improve performance on 1-to-N, N-

to-1, and N-to-N triple scoring, the primary weakness of family of traditional ”transla-

tion” models like TransE, TransH, and TransR [49]

2.3.4 CNNs for Textual Relation Extraction

One of the first works to interpret a sentence or phrase in which two entities are collo-

cated as a natural language expression of the relationship between them. The difficulty

is finding a representation of that relatinoship in vector form that can be used in a triple

scoring function.

Toutanova et al. from Microsoft Research built on the philosophy of Universal
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Schemas by including surface forms (rather, the dependency parses) of textual instances

into the knowledge graph to admit joint inferences over the Freebase relation schema and

text. They employ models E and F (and Dist-Mult) to perform the triple ranking task.

Their main contribution was finding k dimensional embeddings of dependency parses

of the raw textual mentions using a 1-layer convolutional neural network (CNN), which

was motivated by the observation that many synonymous surface forms share common

words and dependency structures. The choice of using a CNN stems from a movement

recognizing compositional models of text to yield better performance in discriminating

the underlying relationship being expressed [45, 44]

LΘ = LKG(T ; θE, θR) + τLText(TText; θV , θM) + λ||Θ||2 (2.5)

LKG is responsible for the parameters of Θ corresponding to KG entity and relation

embeddings, while LText is responsible for the vocabulary and relation extraction model,

M .

Their model only uses textual mentions at training time to augment the embeddings

of entities, as the CNN only takes as input the entity vectors for el and er and the word

vectors of the textual mention. It does not update the KB relationship parameters explic-

itly, but it asks the model to interpret the extracted textual relation vector as a surrogate

for the true relationship over which to translate from the head to tail entity. However,

there is no mechanism to enforce that the extracted textual relationship representation

should be ”close” to the KB relationship representation, and there’s no reason to believe

the CNN would embed the text into the KB relationship space. This leaves the model

vulnerable to noise in the raw text and the very common phenomenon that a given tex-

tual mention can represent many relationships (even if the head and tail entities are held

constant). Alternatives to this will be discussed in section 2.3.6.
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During training, the textual instances are subject to same objective as KB triples, but

down-weighted by a factor of τ to account for the fact that textual triples are auxiliary.

Their experiments show that co-training with text improves the base models, but the

improvements are most marked when the text-augmented base models of E and DistMult

are combined, suggesting that textual training does not make up for the deficiencies in

any one model, but rather lead to broad improvements in models that already have the

capacity to be expressive. Their results also show that performance on triples which had

textual instances improved for nearly all models, suggesting that entities that engage in

textual triples are fine tuned over the base models [45]

2.3.5 Aligning Entity and Word Vectors using Descriptions

Numerous papers investigate refining entity representations with their descriptions (from

wikipedia, for instance) [27, 64, 56, 55, 57]

Wang et al. propose a new embedding technique that finds a shared space for both

entities in a KB and words in a vocabulary, where an entity embedding is trained jointly

with KB triples and textual resources, such as the words in the name of the entity itself,

and the wikipedia anchors it’s referenced in. As long as they appear in some textual

form, aligning entities in this fashion provides flexibility to deal with out-of-KB enti-

ties [48].

They make the assumption that for two words (or a word and entity) appearing in

a given context, there is some hidden variable representing the relation between them.

They attempt to learn embeddings of both the word (or entity) and the hidden relation-

ship. The probabilistic model they propose is conceptually similar to skipgram in that if

two words co-occur, their inner products should be larger than if they don’t co-occur.
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For every word w ∈ V they wish to estimate a hidden relationship vector rwv ∈ Rd

between w and every other word v with which it co-occurs in the corpus within some

window. As each word co-occurs with too many other words, on average, to justity

learning a separate rwv for every v, to reduce the number of parameters, they instead

learn a ”destination” vector w′ ∈ Rd such that w′ ≈ w+ rwv. Slightly abusing notation,

we allow w to be both a word and its word embedding, and in addition w′ a word

embedding for w is learned as well, resulting in 2|V| parameters. The destination vector

w′ for word w is meant to satisfy an interpretation of the TransE objective with regard

to another co-occuring word v in the following way: z(w, v) = b − ||w′ − v||2. That

is, for v a word that occurs often with w, w′ should be close to v; in general, w′ is the

region in the vector space containing the other elements that w often accompanies [48].

To align knowledge graph entities with words, each entity v is treated as a word in

the vocabulary and given a vector ev. The context around each Wikipedia anchor link

is considered, and the text model is trained on (w, ev) for all words w that appear near

the anchor for entity v. Now, the w′ learned for each word is trained to be near the

entities which the word co-occurs with in anchor text. They propose a similar alignment

model considering the words in the name of the entity as ”co-occuring” with it. To train

this model, they again use the negative sampling technique to approximate the original

probabilistic objective with a ranking objective [48]. Their results improve on AKBC

(triplet classification) as well as relation extraction.

2.3.6 Fully Joint Learning for Text, Entities, and Relations

The above works focus on either refining entity embeddings with text or extracting rela-

tionships from text. Han et al. argue that a truly joint model for learning KB embeddings
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with text would take advantage of a textual mention to update both the entities and re-

lationship KG embeddings explicitly, rather than just one or the other [14]. They also

use the same loss for KB entities as 2.5, but build on the CNN approach by modifying

the text objective to force relationship representations extracted by the CNN, rtext to

also be close to that of the KB relationship r, which is reminiscent of discriminative

models. They define a textual scoring function fr(x, r) = ||r − rtext||2 that scores a

textual embedding highly if it is close to the KG relationship r which it is supposed to

represent [45]. The overall loss on the textual data set TText is defined analogously to

the KG loss:

L(Ttext) =
∑

x∈Ttext

∑
r′∈R

max
(
0, γ + fr(x, r)− fr(x, r

′)
)

(2.6)

This objective treats the distantly supervised KB relation r as a label and encourages

the CNN to find maximally discriminative relation embeddings for text. They validate

this claim by performing a relation classification experiment (without incorporating the

bookended entities) to rank the relations that a sentence is predicted to exhibit. They

compare the precision-recall curves for relation classification between a CNN that was

never exposed to KB embeddings to a CNN trained with KB embeddings and the loss

function described above, with the jointly-trained CNN clearly outperforming the other

[14]. Although this objective directly informs the relation embedding model to align

textual embeddings with their corresponding KB relationship embeddings, it lacks the

capacity to update entity embeddings for a textual triple, an important concept in [45].

Lastly, their model appends to each word vector in the sentence another vector encoding

the position of the word in the sentence relative to each of the bookended entity anchors.
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2.4 Hybrid Techniques

There have been myriad approaches to incorporate the structure of the graph, ”observ-

able features” with latent factor models and even text. This technique of combining

objectives and features was coined ”Additive relational effects (ARE)” by Nickel et

al [31], and was first introduced for tensor factorization approaches to KBC. We briefly

mention some others below. While many publications speculate that latent and observ-

able techniques can be combined to produce better results, very few actually do so and

still fewer report significantly improved results without extensive engineering.

2.4.1 Graph Features: NodeFeat and LinkFeat

Features for encoding the structure of a knowledge graph can also be derived from the

graph itself in what are known as observed models. These models are extremely pow-

erful and conceptually simple, with the only drawback being that the features must be

hand-derived and often have very high dimensionality due to the branching factors that

KGs often exhibit. They have proven adept at capturing correlations in the presence

of different relation types between pairs of entities in multi-relational data, as well as

patterns in relation paths that commonly exist between pairs of entities [44].

Some features Toutanova et al. extracted for an arbitrary triple (el, r, er) include

• Indicators for the entities occuring in the subject and object positions in the triple

to capture any biases of where entities prefer to be in subject or object positions

in a triple as well as unigram probabilities of entities overall.

• Length one paths between (el, er): a binary feature which fired for all triples

(el, r
′, er) for which r′ ̸= r. This captures co-occurence of relationships that
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exist between (el, er), for example ”work-in” and ”live-in” relationships.

• Length-ℓ paths between (el, er)

• Existence of inverse paths from er to er: a binary feature which fires for, say,

length-1 paths as defined above. This captures correlations between inverse rela-

tions.

For observed models, the score of a triple is typically defined by the dot product

between the feature vector and a vector of parameters [44].

2.4.2 Miscellaneous

There has been an interest in modeling logical and type constraints, for example, to

enforce rules such as a marriage can be only between two people, the employer of a

person is a business, etc. [5]

The semantic parsing community is a related field which seeks to map natural lan-

guage to logical expressions over elements in the KG, that is, paths.
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CHAPTER 3

CONTRIBUTION AND NOVEL WORK

3.1 A New Embedding Model: ModelE-X

We introduce a novel vector parameterization of entities and relations inspired by Mod-

elE, which we name ModelE-X (Model-E Extended)1. Like ModelE, ModelE-X also

defines two relation vectors, but provides three enhancements that improve expressive-

ness and flexibility:

fModelE−X(h, r, t) = ∥eh ⊙ rh − et ⊙ rt∥

where ⊙ is elementwise vector multiplication (again a true triple should score high).

1. ModelE-X modulates the response of a relation component to its argument at a

much finer granularity than a simple dot product due to the element-wise product

(inspired by the gates of an LSTM)

2. Whereas ModelE can mistakenly give a high score to a false triple if one of the

two dot products is high enough, ModelE-X requires the two response vectors to

be similar, which is much less likely to occur spuriously.

3. We allow any choice of dissimilarity metrics, like ℓ1 or ℓ2, between response vec-

tors (ℓ1 works better in practice).

These advantages come without any sacrifice to complexity or runtime (Ed + 2Rd pa-

rameters).
1We make our code, experiments, and logs available at www.ANONYMIZEDLINK.com.
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Along a similar vein, we questioned whether an element-wise relation operator was

too simple, and perhaps a separate matrix for the head and tail arguments was needed.

We introduce “ModelE-XL” (Model-E Extended, Linear)

fModelE−XL(h, r, t) = ∥W h
r eh −W t

ret∥

as the natural generalization of ModelE-X (it reduces to ModelE-X if W h
r and W t

r are

diagonal). Both ModelE-X and ModelE-XL give high scores to true triples.

3.2 Role of Textual Representations in Latent Factor Models

The community has typically chosen one of two roles for text: using vector represen-

tations of text as regularization to the embeddings of KB relations, e.g. ||rKB − rtext||,

or using it as a noisy surrogate for the KB relation, e.g. in TranE, ||eh + rtext − et||.

Typically, for a model like TransE (or DistMult) the loss of a triple is the sum

margincost(ehead,pos, ehead,neg) + margincost(etail,pos, etail,neg)

where margincost(ehead,pos, ehead,neg) is defined to be
[
||eh+r−et||+margin−

||e′h + r − et||
]
+

for ehead,pos a head entity that makes the triple (ehead, r, etail)

true, wheres a negative head entity would make the triple false (non-existent in

the KB). It is analogously defined for margincost(ehead,pos, ehead,neg) and even

margincost(rpos, rneg).

1. Text-as-Regularization: first proposed by Han et al [14], the loss for a textual

triple is defined to be only ||r− rtext|| where r is (possibly any of) the KB relation

that exists between the annotated head and tail entities.
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2. Text-as-Relation: Used in [45], a textual relation extractor (in their case, a CNN)

is built to encode text between two linked entities in a corpus into a vector that

lives in the same space as the KB relation vectors. They then use the extracted

vector in place of the KB relation vector in the hope that the KB entities will help

align it, and hence train the extractor to map into the KB relation space.

In this work, we will present results on using a convex combination of Text-as-

Regularization and Text-as-Relation during training.

3.3 New Evaluation Approaches

3.3.1 Micro Averaging

Relations are widely and unevenly distributed with respect to how many different kinds

of entities they accept into the head and tail argument positions. One informative mea-

sure of KBC performance is based on the categories of relationships that arise from the

cardinality of head and tail entities: 1-to-1, 1-to-Many, Many-to-1, and Many-to-Many.

Bordes et al. compute the average number of heads (resp. tails) appearing in the FB15k

or FB1M dataset given a pair (r, er) (resp. (r, el)). If the average number of tails per

head (resp. heads per tail) is less than 1.5, then the relationship can be labeled as 1-to-X

(resp. X-to-1) depending on what the multiplicity of the other direction is [2].

However, even within these buckets the distribution of frequency of relations may

be highly skewed, where a few common relations dominate training and testing sets.

Figure 4.1 shows histograms supporting this claim. We propose an extension of buck-

eting to “micro” averaging, that is, taking the average of averages of a ranking metric
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for each relation. This treats every relation equally and captures a more realistic notion

of how good the learned relation representations are even for new or rarely seen rela-

tions, which appear very often in practice. In this way, we argue it is a better notion of

generalizability.

3.3.2 Relation Ranking

Virtually no papers mention training with relation ranking loss, as many in the commu-

nity assume that by training against corrupted entity triples, the relation representations

will also be forced to improve. This turns out not to be the case, as our results in Table

4.4 show, where we compare a model which was trained on relation loss versus one that

was not (all else being equal).
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CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

4.1 Data and Experiments

4.1.1 Knowledge Base and Text Datasets

TODO: Mention some other data sets like YAGO, etc

1.2 billion facts, 80mil entities, 23k relationship types. Usually the top ≈ 4 million

entities appearing in triples are selected.

FB15k: subset of FB entities that are also present in the Wikilinks database

(code.google.com/p/wiki-links), and also both entities and relationships must have at

least 100 mentions in FB. No redundant relationships (like reversal of another one). This

results in 592,213 triplets with 14,951 entities and 1,345 relationships. FB15K also con-

tains 26.2% 1-to-1 relationships, 22.7% 1-to-Many relationships, 28.3% of Many-to-1,

and 22.8% of Many-to-Many relationships [2].

KG Dataset Entities Relation Types Facts
Freebase 40 M 35,000 637 M
Freebase 15k 14,951 1,345 600 k
Wikidata 18 M 1,632 66 M
DPpedia (en) 4.6 M 1,367 538 M
YAGO2 9.8 M 114 447 M
Google Knowledge Graph 570 M 35,000 18 B

Table 4.1: Some statistics of the major knowledge graph datasets from [32]

Clueweb is a collection of hundreds of millions of high-quality web pages mined

from the internet. Researchers annotated the text on the web pages with links from
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Figure 4.1: The distribution of the roughly 16,000 test triples for FB15k is highly non-
uniform. Left is a histogram of the test set relations; there are 1,345 relations in FB15k.
Right is a histogram of the test set entities, of which there are 14,951

named entities to their Freebase identifiers1. Clueweb annotations, when coupled with

Freebase, result in tens of millions of textual instances [9]. For instance, when entities

in Clueweb12 are coupled with mentions from FB237 the results is 37 million unique

textual instances which cover nearly all of the 14,541 entities in the original FB-237

dataset, and nearly 40 percent of the training triples have textual instances [45].

We use the FB15k dataset with the train, dev, and test splits of [2] for our link

prediction task. It contains 14,951 entities, 1,345 relations, 483,142 train triples, 50,000

dev triples, and 59,071 test triples. We re-implemented many canonical algorithms to

eliminate sources of error and make comparisons between different algorithms’ results

more meaningful. We also do this because sometimes there isn’t exact consensus about

an algorithm’s performance in the scientific community.

We tuned the margin γ over {0.2, 0.5, 1.0, 1.5, 2.0}, we set the dimension d of en-

tity and relation embeddings to be 100 in all the models we implement except Bilinear,

which was 50, but we acknowledge that nearly all models improve with more dimen-
1http://lemurproject.org/clueweb12/FACC1/
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Micro Averages
For Each Method

Mean Rank Median Rank MRR (×100) Hits@10 (%)
Rel Entity Rel Entity Rel Entity Rel Entity

Unstructured NA 1074 / 979 NA - NA - NA 4.5 / 6.3
UnstructuredDot* NA 1172 / 1077 NA 377 / 312 NA 2.9 / 3.83 NA 7.02 / 9.14
ModelE* 2.01 / 1.66 460 / 363 1 / 1 84 / 50 79.2 / 89.9 13.8 / 22.1 99.1 / 99.2 24.7 / 34.0
Bilinear* (50) 3.09 / 2.75 182 / 84.4 1 / 1 21 / 7 83.3 / 94.4 20.9 / 36.1 99.5 / 99.5 38.7 / 56.1
BilinearDiag* 7.057 / 6.74 229 / 129 2 / 2 33 / 17 54.1 / 56.8 15.0 / 23.3 89.9 / 90.8 30.8 / 42.5
TransE* 5.3 / 4.9 800 / 725 2 / 2 79 / 46 54.1 / 58.9 13.6 / 19.6 94.1 / 94.6 24.9 / 32.4

TransR - 198 / 77 - - - - - 48.2 / 68.7
TransH - 212 / 87 - - - - - 45.7 / 47.1
PTransE - 207 / 58 - - - - - 51.4 / 84.6
STransE - 219 / 69 - - - 25.2 / 54.3 - 51.6 / 79.7
Node+LinkFeat - - - - - - / 82.2 - - / 87.0

Our ModelE-X* 2.89 / 2.56 186 / 82.5 1 / 1 16 / 5 77.6 / 86.4 23.6 / 40.6 97.1 / 97.3 43.3 / 62.9
ModelE-X* (200) 2.68 / 2.34 188 / 80 1 / 1 11 / 2 79.7 / 89.4 27.1 / 53.8 98.1 / 98.2 49.8 / 76.6
ModelE-X* (500) 2.37 / 2.04 168 / 54.6 1 / 1 9 / 1 79.5 / 88.4 29.3 / 64.4 98.4 / 98.5 53.4 / 83.4
Our ModelE-XL* - 223 / 124 - 28 / 11 - 17.8 / 30.2 - 33.6 / 49.2

Table 4.2: We compare our models against several classical and state-of-the-art algo-
rithms using the traditional ”Micro” averages for evaluation metrics. Our ModelE-X is
competitive and in some cases surpasses even state of the art algorithms such as STransE
and LinkFeat. Each value reports ”raw” / ”filtered” metrics on FB15k test set. Paren-
thesis indicate the embedding dimension, else it is 100 for all models we implement,
which are marked with an asterisk. Values reported in entity columns represent the av-
erage of left and right entity ranking metrics; NA means “not applicable”, and “-” means
unreported.

Macro Averages
For Each Method

Mean Rank Median Rank MRR (×100) Hits@10 (%)
Rel Entity Rel Entity Rel Entity Rel Entity

ModelE* 4.72 / 4.08 151 / 129 4 / 3 13.5 / 9 54.7 / 66.6 25.9 / 34.5 93.7 / 94.3 47.9 / 56.5
Bilinear* 14.2 / 13.6 172 / 151 13 / 12 11 / 6 60.4 / 74.5 30.1 / 41.3 92.3 / 92.8 52.2 / 62.0
BilinearDiag* 53.7 / 53.1 284 / 264 50 / 49 41 / 33 14.8 / 15.9 15.9 / 19.8 35.1 / 36.2 30.6 / 35.3
TransE* 61.7 / 61.1 745 / 725 58 / 57 23 / 19 24.3 / 27.6 22.0 / 27.6 59.9 / 61.5 39.3 / 45.1

Our ModelE-X* 37.2 / 36.6 121 / 100 36 / 35 8 / 3.5 30.5 / 36.3 35.4 / 48.4 58.7 / 60.3 59.3 / 70.4
ModelE-X* (200) 38.9 / 38.2 151 / 129 37.5 / 37 6 / 2 38.5 / 46.6 38.7 / 56.9 69.1 / 70.2 64.2 / 78.7
ModelE-X* (500) 24.8 / 24.1 88.3 / 64.9 23.7 / 23 4.5 / 1 40.4 / 48.9 44.3 / 66.9 74.4 / 75.1 68.7 / 84.1
Our DoubleLinear* - 466 / 447 - 17.5 / 11.5 - 22.4 / 32.2 - 42.3 / 52.2

Table 4.3: Our ModelE-X truly excels when all relations are treated equally, that is,
the macro average across relations is taken (the average of relation-specific averages for
a particular metric). ModelE-XL is rather difficult to train and regularize since it has
quadratically-many parameters in d

sions2 We choose between ℓ1 and ℓ2 dissimilarity metrics, but in nearly every case ℓ1

was superior (and faster).
2For instance, [44] achieve Hits@10 = 79.7 for Bilinear with d = 500 and [60] achieve Hits@10 of

57.7 for d = 100, which we corroborate.
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Relationships Prevalent in FB15k Test Set Count
award/award nomination/award nominee 2060
film/film/release date 1591
award/award nomination/award 1555
people/profession/people with this profession 1478
award/award category/nominees 1451
people/person/profession 1384
award/award nominated work/award nominations 1190
film/actor/film 1168
award/award category/nominees 1160
film/film/starring 1123
award/award winner/awards won 1045

Table 4.4: Most prevalent relations in the FB15k test set, which has 16291 triples in
total. Clearly, a handful of relationships, all related to either awards or films, comprise a
disproportionate amount of the test data. Fortunately, the distribution of relations in the
training set is roughly equivalent.

We ran mini-batch gradient descent with a batch size of one one-hundredth the size

of the training set, with constant step size for up to 500 epochs, with early stopping

if MRR did not improve after 30 epochs. We ran the dev set every 10 epochs. We

re-normalized all entity embeddings to unit ℓ2 norm after every minibatch, and we reg-

ularized relation-specific parameters with ℓ2 norm (a regularization coefficient of 0.01

was satisfactory).

4.2 Results and Discussion

The “Micro” partition of Table 1 shows that ModelE-X outperforms or is competi-

tive with state-of-the-art embedding models such as STransE [30] and more sophis-

ticated algorithms that consider expensive path training, such as PTransE [25] and

Node+LinkFeat [46], even outperforming them on Mean and Median Rank for entities.

Virtually no publications report relation ranking metrics, which contributes valuable
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Micro Averages
For Each Method

Mean Rank Median Rank MRR (×100) Hits@10 (%)
Rel Entity Rel Entity Rel Entity Rel Entity

ModelE-X (300) 2.55 / 2.22 175 / 63.9 1.0 / 1.0 10 / 2.0 78.3 / 86.9 28.0 / 55.8 97.9 / 98.1 50.9 / 77.7
ModelE-X (300)* 25.6 / 25.3 171 / 60.2 10 / 9 8 / 1 32.8 / 33.2 29.8 / 66.9 50.9 / 51.7 54.5 / 85.5

Macro Averages
For Each Method

Mean Rank Median Rank MRR (×100) Hits@10 (%)
Rel Entity Rel Entity Rel Entity Rel Entity

ModelE-X (300) 29.3 / 28.7 97.6 / 74.6 28 / 27 5 / 2 36.3 / 43.9 42.4 / 61.9 68.4 / 69.7 66.4 / 80.4
ModelE-X (300)* 110 / 109 96.3 / 73.2 108 / 108 4 / 1 3.1 / 3.1 47.4 / 73.1 4.32 / 4.45 71.6 / 86.9

Table 4.5: Here we compare two very good models with the same parameters, except
the loss function of the model marked with asterisk did not include contrasting positive
and negative relations, yet here we evaluate it on relation ranking in the test data to
show its weakness in both micro and macro metrics. Contrary to many beliefs, models
trained without relation ranking will not automatically learn good relation representa-
tions, which in our opinion is a vulnerability. However, with the relation ranking loss,
entity metrics do a suffer a bit, showing the trade-offs of these loss functions

information. For example, Table 1 suggests that in the usual micro average setting,

weaknesses in TransE and BilinearDiag become more readily apparent based on relation

metrics rather than entity ranking metrics, since they attain relatively higher Mean Ranks

and lower MRRs, while their entity Hits@10 and MRRs do not raise concern These

weaknesses become even more apparent for all metrics in the macro case. Relation

ranking also reveals that Bilinear and ModelE (and ModelE-X) behave more similarly

than previously thought, as they have similar MRR and Hits@10 on relations in both

the macro and micro cases.

We note that relation ranking is useful in a number of tasks related to KBC, such as

relation extraction from text. In that scenario, a pair of entities close to one another in

the text are thus suspected of being linked, but it is uncertain exactly by which relation

(or path of relations). We propose that a relation extraction engine could be augmented

with a pretrained modelE or modelE-X model rather than training a separate distantly-

supervised model [28].

Nearly all publications report the weighted average w.r.t the frequency of relations

in the test data (micro average), which might be an over-simplification. It is unclear
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whether poor ranking performance is a symptom of the test data distribution, or a sign

the model truly lacks capacity to capture relevant patterns. The macro average decou-

ples these factors to allow for clearer insight into how the model behaves on the whole

schema rather than a potentially biased sample of it. While it is common to report perfor-

mance on buckets of relation types (1-to-1, 1-to-Many, Many-to-1, Many-to-Many) [2],

a few relations may still dominate those buckets. To get the most realistic perspective

on how a model will do on new relationships, metrics should be reported irrespective of

the distribution of relationships in the dataset.

The macro average also reveals a massive discrepancy in TransE’s relation metrics.

TransE has been known to struggle with relationships that aren’t 1-to-1 [2], but the mi-

cro average clearly masks this systemic weakness behind a distribution of relationships

TransE can grasp. Interestingly, while most models suffer in the macro average cat-

egory over the micro, ModelE and ModelE-X actually benefit on relation and entity

MRRs and Hits@10 (bolded bottom row), suggesting that these models are adept at

general reasoning across an entire schema.
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Figure 4.2: A T-SNE visualization of some of the vector representations learned by a
Bilinear model for some of the most common entities in FB15k.
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Figure 4.3: A T-SNE visualization of the head relation vectors learned by ModelE.

38



CHAPTER 5

A COMMON MISTAKE IN PRACTICE

I believe there is a mistake in the code for the original TransE results. The

original 2013 NIPS paper [2] cites their organization’s website1 which links to the

github implementation https://github.com/glorotxa/SME. In line 31 of

model.py, the definition of margincost2 is [neg− pos+marge]+, when it should

be [pos − neg + marge]+. They even state the correct form in their paper. The score

function for TransE, ||et + r − et||, assigns a positive low score to positive triples (they

have ”low energy”), but their code’s implementation is for a function that gives high

scores to a positive triple. What their updates must be doing is as trivial as clustering

entities that appear together (to give pos a high score, which subsequently forces the

relation vectors to zero. The community/authors need to be aware of this, since many

many papers (nearly all the ones cited in this document, for instance) simply report these

incorrect numbers as truth. I’ve corrected my code and the entity ranking metrics are

indeed worse than they reported. Relation ranking, however, is much better.

1https://everest.hds.utc.fr/doku.php?id=en:codes
2Where pos is the score of the positive triple (all scores are nonnegative), and neg is the margin cost

of a random negative triple. The definition of margincost
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